Line data Source code
1 : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 2 : Copyright (c) 2016-2023 The plumed team 3 : (see the PEOPLE file at the root of the distribution for a list of names) 4 : 5 : See http://www.plumed.org for more information. 6 : 7 : This file is part of plumed, version 2. 8 : 9 : plumed is free software: you can redistribute it and/or modify 10 : it under the terms of the GNU Lesser General Public License as published by 11 : the Free Software Foundation, either version 3 of the License, or 12 : (at your option) any later version. 13 : 14 : plumed is distributed in the hope that it will be useful, 15 : but WITHOUT ANY WARRANTY; without even the implied warranty of 16 : MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 : GNU Lesser General Public License for more details. 18 : 19 : You should have received a copy of the GNU Lesser General Public License 20 : along with plumed. If not, see <http://www.gnu.org/licenses/>. 21 : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */ 22 : #include "DistanceFromContourBase.h" 23 : #include "core/ActionRegister.h" 24 : 25 : //+PLUMEDOC COLVAR DISTANCE_FROM_SPHERICAL_CONTOUR 26 : /* 27 : Calculate the perpendicular distance from a Willard-Chandler dividing surface. 28 : 29 : This action works similarly to [DISTANCE_FROM_CONTOUR](DISTANCE_FROM_CONTOUR.md). Within this action a field is constructed that measures the density 30 : of the system at each point in space using: 31 : 32 : $$ 33 : p(x,y,x) = \sum_{i=1}^N K\left[\frac{x-x_i}{\sigma_x},\frac{y-y_i}{\sigma_y},\frac{z-z_i}{\sigma_z} \right] 34 : $$ 35 : 36 : In this expression $\sigma_x, \sigma_y$ and $\sigma_z$ are bandwidth parameters and 37 : $K$ is one of a Gaussian kernel function. With that field in place we can define a Willard-Chandler 38 : surface is defined a surface of constant density in the above field $p(x,y,z)$. 39 : In other words, we can define a set of points, $(x',y',z')$, in the box which have: 40 : 41 : $$ 42 : p(x',y',z') = \rho 43 : $$ 44 : 45 : where $\rho$ is some target density. In [DISTANCE_FROM_CONTOUR](DISTANCE_FROM_CONTOUR.md) we assume that this set of points lie on a manifold that 46 : has the same topology as one or multiple planes. Here, by contrast, we assume that this set of points lie on a manifold that has the same topology 47 : as a sphere. This action then returns the distance between this spherical manifold and the position of a test particle. This distance is measured 48 : along a vector perpendicular to the manifold. 49 : 50 : ## Examples 51 : 52 : The following input calculates a [CONTACT_MATRIX](CONTACT_MATRIX.md) between a set of atoms in which element $i,j$ is only non-zero if atoms $i$ and $j$ 53 : are within 6 nm of each other. We then use this matrix as input for a [DFSCLUSTERING](DFSCLUSTERING.md) action that finds the largest connected component 54 : in the matrix. The [CENTER](CENTER.md) of this cluster is then identified and the location of an isocontour in: 55 : 56 : $$ 57 : p(x,y,x) = \sum_{i=1}^N \xi_i f(c_i) K\left[\frac{x-x_i}{\sigma_x},\frac{y-y_i}{\sigma_y},\frac{z-z_i}{\sigma_z} \right] 58 : $$ 59 : 60 : is found using this action. In this expression $\xi_i$ is 1 if atom $i$ is part of the largest cluster and zero otherwise, $c_i$ is the coordination number of atom $i$ and 61 : $f$ is a swtiching function. The distance between this isocontour and position of atom 513 as well as the distance between `com` (the center of the largest cluster) 62 : and the isocontour is then output to a file called colvar. 63 : 64 : ```plumed 65 : ones: ONES SIZE=512 66 : # Calculate contact matrix 67 : c1_mat: CONTACT_MATRIX GROUP=1-512 SWITCH={EXP D_0=4.0 R_0=0.5 D_MAX=6.0} 68 : # Calculate coordination numbers 69 : c1: MATRIX_VECTOR_PRODUCT ARG=c1_mat,ones 70 : # Select coordination numbers that are more than 2.0 71 : cf: MORE_THAN ARG=c1 SWITCH={RATIONAL D_0=2.0 R_0=0.1} 72 : # Find largest cluster 73 : dfs: DFSCLUSTERING ARG=c1_mat 74 : clust1: CLUSTER_WEIGHTS CLUSTERS=dfs CLUSTER=1 75 : com: CENTER ATOMS=1-512 WEIGHTS=clust1 PHASES 76 : # Filtered coordination numbers for atoms in largest cluster 77 : ff: CUSTOM ARG=clust1,cf FUNC=x*y PERIODIC=NO 78 : # Now do the multicolvar surface 79 : dd: DISTANCE_FROM_SPHERICAL_CONTOUR ARG=ff POSITIONS=1-512 ATOM=513 ORIGIN=com BANDWIDTH=1.0,1.0,1.0 CONTOUR=0.5 80 : PRINT ARG=dd.* FILE=colvar 81 : ``` 82 : 83 : */ 84 : //+ENDPLUMEDOC 85 : 86 : namespace PLMD { 87 : namespace contour { 88 : 89 : class DistanceFromSphericalContour : public DistanceFromContourBase { 90 : public: 91 : static void registerKeywords( Keywords& keys ); 92 : explicit DistanceFromSphericalContour( const ActionOptions& ); 93 : void calculate(); 94 : void evaluateDerivatives( const Vector& root1, const double& root2 ); 95 : }; 96 : 97 : PLUMED_REGISTER_ACTION(DistanceFromSphericalContour,"DISTANCE_FROM_SPHERICAL_CONTOUR") 98 : 99 3 : void DistanceFromSphericalContour::registerKeywords( Keywords& keys ) { 100 3 : DistanceFromContourBase::registerKeywords( keys ); 101 6 : keys.addOutputComponent("dist","default","scalar","the distance between the reference atom and the nearest contour"); 102 6 : keys.addOutputComponent("radius","default","scalar","the radial distance from the center of the contour to the edge"); 103 3 : keys.add("atoms","ORIGIN","The position of the center of the region that the contour encloses"); 104 3 : keys.addDOI("10.1021/acs.jpcb.8b03661"); 105 3 : } 106 : 107 1 : DistanceFromSphericalContour::DistanceFromSphericalContour( const ActionOptions& ao ): 108 : Action(ao), 109 1 : DistanceFromContourBase(ao) { 110 : // Create the values 111 : std::vector<std::size_t> shape; 112 1 : addComponentWithDerivatives("dist", shape ); 113 1 : componentIsNotPeriodic("dist"); 114 1 : addComponent("radius", shape ); 115 2 : componentIsNotPeriodic("radius"); 116 1 : } 117 : 118 17 : void DistanceFromSphericalContour::calculate() { 119 : // Check box is orthorhombic 120 17 : if( !getPbc().isOrthorombic() ) { 121 0 : error("cell box must be orthorhombic"); 122 : } 123 : 124 : // Calculate the director of the vector connecting the center of the sphere to the molecule of interest 125 17 : Vector dirv = pbcDistance( getPosition(getNumberOfAtoms()-1), getPosition(getNumberOfAtoms()-2) ); 126 17 : double len=dirv.modulo(); 127 : dirv /= len; 128 : // Now work out which atoms need to be considered explicitly 129 17 : pbcDistance( getPosition(getNumberOfAtoms()-1), getPosition(0) ); 130 17 : nactive=1; 131 17 : active_list[0]=0; 132 8704 : for(unsigned j=1; j<getNumberOfAtoms()-2; ++j) { 133 8687 : if( getNumberOfArguments()==1 ) { 134 8687 : if( getPntrToArgument(0)->get(j)<epsilon ) { 135 : continue; 136 : } 137 : } 138 6698 : active_list[nactive]=j; 139 6698 : nactive++; 140 6698 : Vector distance=pbcDistance( getPosition(getNumberOfAtoms()-1), getPosition(j) ); 141 : double dp = dotProduct( distance, dirv ); 142 6698 : double cp = distance.modulo2() - dp*dp; 143 6698 : if( cp<rcut2 ) { 144 476 : active_list[nactive]=j; 145 476 : nactive++; 146 : } 147 : } 148 : // Get maximum length to fit in box 149 17 : double hbox = 0.5*getBox()(0,0); 150 17 : if( 0.5*getBox()(1,1)<hbox ) { 151 0 : hbox = 0.5*getBox()(1,1); 152 : } 153 17 : if( 0.5*getBox()(2,2)<hbox ) { 154 0 : hbox = 0.5*getBox()(2,2); 155 : } 156 : // Set initial guess for position of contour to position of closest molecule in region 157 17 : std::vector<double> pos1(3), dirv2(3); 158 68 : for(unsigned k=0; k<3; ++k) { 159 51 : dirv2[k]=hbox*dirv[k]; 160 51 : pos1[k]=0; 161 : } 162 : // Now do a search for the contours 163 : findContour( dirv2, pos1 ); 164 : // Now find the distance between the center of the sphere and the contour 165 17 : double rad = sqrt( pos1[0]*pos1[0] + pos1[1]*pos1[1] + pos1[2]*pos1[2] ); 166 : // Set the radius 167 17 : getPntrToComponent("radius")->set( rad ); 168 : // Set the distance between the contour and the molecule 169 17 : getPntrToComponent("dist")->set( len - rad ); 170 : 171 : // Now calculate the derivatives 172 17 : if( !doNotCalculateDerivatives() ) { 173 0 : plumed_merror("derivatives not implemented"); 174 : } 175 17 : } 176 : 177 0 : void DistanceFromSphericalContour::evaluateDerivatives( const Vector& root1, const double& root2 ) { 178 0 : plumed_error(); 179 : } 180 : 181 : } 182 : }