LCOV - code coverage report
Current view: top level - crystdistrib - QuaternionProductMatrix.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 75 82 91.5 %
Date: 2025-12-04 11:19:34 Functions: 3 3 100.0 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             :    Copyright (c) 2011-2023 The plumed team
       3             :    (see the PEOPLE file at the root of the distribution for a list of names)
       4             : 
       5             :    See http://www.plumed.org for more information.
       6             : 
       7             :    This file is part of plumed, version 2.
       8             : 
       9             :    plumed is free software: you can redistribute it and/or modify
      10             :    it under the terms of the GNU Lesser General Public License as published by
      11             :    the Free Software Foundation, either version 3 of the License, or
      12             :    (at your option) any later version.
      13             : 
      14             :    plumed is distributed in the hope that it will be useful,
      15             :    but WITHOUT ANY WARRANTY; without even the implied warranty of
      16             :    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      17             :    GNU Lesser General Public License for more details.
      18             : 
      19             :    You should have received a copy of the GNU Lesser General Public License
      20             :    along with plumed.  If not, see <http://www.gnu.org/licenses/>.
      21             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      22             : #include "matrixtools/OuterProduct.h"
      23             : #include "core/ActionRegister.h"
      24             : 
      25             : //+PLUMEDOC MCOLVAR QUATERNION_PRODUCT_MATRIX
      26             : /*
      27             : Calculate the outer product matrix from two vectors of quaternions
      28             : 
      29             : Calculate the outer product matrix from two vectors of quaternions. Quaternions are made of four numbers, one real number, and three imaginary numbers \textit{i}, \textit{j}, and \textit{k}. The imaginary numbers are not commutative:
      30             : 
      31             : \[ij =k\] \[jk=i\] \[ki=j\] \[ji = -k\] \[ik = -j\] \[kj = -i\] \[ii = jj = kk = -1\]
      32             : 
      33             : Thus multiplying two quaternions $\mathbf{q_1} = w_1 + x_1i + y_1j + z_1k  $ and $\mathbf{q_2} = w_2 + x_2i + y_2j + z_2k$ yields the following four components:
      34             : 
      35             : \[w_{12} = w_1w_2 - x_1x_2 - y_1y_2 -z_1z_2\]
      36             : \[x_{12}i = (w_1x_2 + x_1w_2 + y_1z_2 - z_1y_2  )i\]
      37             : \[y_{12}j = (w_1y_2 - x_1z_2 + y_1w_2 + z_1x_2)j\]
      38             : \[z_{12}k = (w_1z_2 + x_1y_2 - y_1x_2 + z_1w_2)k\]
      39             : 
      40             : Quaternions can also be multiplied by a real number, and the conjugate $\mathbf{\overline{q}} = w -xi - yj - zk$ is analogous to complex numbers.
      41             : 
      42             : 
      43             : This action takes two equal sized vectors of quaternions of length $n$, and returns four $n\times n$ outer product matrices, corresponding to components w, x, y, and z in the above example. These matrices are real numbers, and will not behave with the usual nuances of quaternion algebra in any CUSTOMS, or other actions, that will need to be accounted for manually. The vectors of quaternions can be the same vectors, or different. Note, since the QUATERNION action returns unit quaternions, all quaternions returned here will also be unit quaternions.
      44             : 
      45             : ```plumed
      46             : #in a system of 4 molecules, each with 3 atoms
      47             : #define quaternions 1-4
      48             : quats12: QUATERNION ATOMS1=1,2,3 ATOMS2=4,5,6
      49             : quats34: QUATERNION ATOMS1=7,8,9 ATOMS2=10,11,12
      50             : 
      51             : #take the outer product of 1,2 and 3,4
      52             : qp: QUATERNION_PRODUCT_MATRIX ARG=quats12.*,quats34.* #notice the asterisk
      53             : #the components need to be passed in the order w1,x1,y1,z1,w2,x2,y2,z2
      54             : #now use in an order parameter
      55             : bpw: CUSTOM ARG=qp.* VAR=w,x,y,z FUNC=exp(w/2+x/2+y/2+z/2) PERIODIC=NO
      56             : ```
      57             : 
      58             : A common strategy when using this action is to multiply a function of elements of the quaternion product matrix by a contact matrix as shown below:
      59             : 
      60             : ```plumed
      61             : # Calculate some quaternions
      62             : quats12: QUATERNION ATOMS1=1,2,3 ATOMS2=4,5,6 ATOMS3=7,8,9 ATOMS4=10,11,12
      63             : # Calculate a contact matrix
      64             : cmap: CONTACT_MATRIX GROUP=1,4,7,10 SWITCH={RATIONAL R_0=0.2 D_MAX=0.7}
      65             : # Calculate the quaternion product matrix
      66             : qp: QUATERNION_PRODUCT_MATRIX ARG=quats12.*,quats12.* MASK=cmap
      67             : # Now calculate a function of the quaternion elements (normally something more complicated than the following is performed
      68             : func: CUSTOM ARG=cmap,qp.* VAR=x,w,i,j,k FUNC=x*(w+i+j+k) PERIODIC=NO
      69             : # Now sum the rows of the above matrix
      70             : ones: ONES SIZE=4
      71             : op: MATRIX_VECTOR_PRODUCT ARG=func,ones
      72             : # And output the values of the order parameter
      73             : DUMPATOMS ATOMS=1,4,7,10 ARG=op FILE=func.yxz
      74             : ```
      75             : 
      76             : Notice how the MASK keyword is used in the CUSTOM in the input to QUATERNION_PRODUCT_MATRIX to prevent PLUMED from calculating the
      77             : elements of the QUATERNION_PRODUCT_MATRIX that will be multiplied by the elements of that matrix `cmap` that is calculated in the
      78             : CONTACT_MATRIX action when the calculations in the CUSTOM action with label `func` are performed.  This is the same procedure that is performed
      79             : in [TORSIONS_MATRIX](TORSIONS_MATRIX.md) and [MATRIX_PRODUCT](MATRIX_PRODUCT.md) to avoid computational expense.  This procedure is automatically
      80             : performed when you use the [ROPS](ROPS.md) shortcut.
      81             : 
      82             : */
      83             : //+ENDPLUMEDOC
      84             : 
      85             : namespace PLMD {
      86             : namespace crystdistrib {
      87             : 
      88             : class QuaternionProductMatrix {
      89             : public:
      90             :   static void registerKeywords( Keywords& keys );
      91             :   void setup( const std::vector<std::size_t>& shape, const std::string& func, matrixtools::OuterProductBase<QuaternionProductMatrix>* action );
      92             :   static void calculate( bool noderiv, const QuaternionProductMatrix& actdata, View<double> vals, MatrixElementOutput& output );
      93             : };
      94             : 
      95             : typedef matrixtools::OuterProductBase<QuaternionProductMatrix> qpop;
      96             : PLUMED_REGISTER_ACTION(qpop,"QUATERNION_PRODUCT_MATRIX")
      97             : 
      98           9 : void QuaternionProductMatrix::registerKeywords( Keywords& keys ) {
      99          18 :   keys.addInputKeyword("compulsory","ARG","vector","the labels of the quaternion vectors that you are outer product of");
     100          18 :   keys.addInputKeyword("optional","MASK","matrix","a matrix that is used to used to determine which elements of the output matrix to compute");
     101          18 :   keys.addOutputComponent("w","default","matrix","the real component of quaternion");
     102          18 :   keys.addOutputComponent("i","default","matrix","the i component of the quaternion");
     103          18 :   keys.addOutputComponent("j","default","matrix","the j component of the quaternion");
     104          18 :   keys.addOutputComponent("k","default","matrix","the k component of the quaternion");
     105           9 : }
     106             : 
     107           6 : void QuaternionProductMatrix::setup( const std::vector<std::size_t>& shape, const std::string& func, matrixtools::OuterProductBase<QuaternionProductMatrix>* action ) {
     108           6 :   unsigned nargs=action->getNumberOfArguments();
     109           6 :   if( action->getNumberOfMasks()>0 ) {
     110           4 :     nargs = nargs - action->getNumberOfMasks();
     111             :   }
     112           6 :   if( nargs!=8 ) {
     113           0 :     action->error("should be eight arguments to this action.  Four quaternions for each set of atoms.  You can repeat actions");
     114             :   }
     115          54 :   for(unsigned i=0; i<8; ++i) {
     116             :     Value* myarg=action->getPntrToArgument(i);
     117          48 :     if( myarg->getRank()!=1 ) {
     118           0 :       action->error("all arguments to this action should be vectors");
     119             :     }
     120          48 :     if( (myarg->getPntrToAction())->getName()!="QUATERNION_VECTOR" ) {
     121           0 :       action->error("all arguments to this action should be quaternions");
     122             :     }
     123          48 :     std::string mylab=(action->getPntrToArgument(i))->getName();
     124          48 :     std::size_t dot=mylab.find_first_of(".");
     125          72 :     if( (i==0 || i==4) && mylab.substr(dot+1)!="w" ) {
     126           0 :       action->error("quaternion arguments are in wrong order");
     127             :     }
     128          72 :     if( (i==1 || i==5) && mylab.substr(dot+1)!="i" ) {
     129           0 :       action->error("quaternion arguments are in wrong order");
     130             :     }
     131          72 :     if( (i==2 || i==6) && mylab.substr(dot+1)!="j" ) {
     132           0 :       action->error("quaternion arguments are in wrong order");
     133             :     }
     134          72 :     if( (i==3 || i==7) && mylab.substr(dot+1)!="k" ) {
     135           0 :       action->error("quaternion arguments are in wrong order");
     136             :     }
     137             :   }
     138           6 :   action->addComponent( "w", shape );
     139           6 :   action->componentIsNotPeriodic("w");
     140           6 :   action->addComponent( "i", shape );
     141           6 :   action->componentIsNotPeriodic("i");
     142           6 :   action->addComponent( "j", shape );
     143           6 :   action->componentIsNotPeriodic("j");
     144           6 :   action->addComponent( "k", shape );
     145           6 :   action->componentIsNotPeriodic("k");
     146           6 : }
     147             : 
     148      630393 : void QuaternionProductMatrix::calculate( bool noderiv, const QuaternionProductMatrix& actdata, View<double> vals, MatrixElementOutput& output ) {
     149      630393 :   std::vector<double> quat1(4), quat2(4);
     150             : 
     151     3151965 :   for(unsigned i=0; i<4; ++i) {
     152             :     // Retrieve the first quaternion
     153     2521572 :     quat1[i] = vals[i];
     154             :     // Retrieve the second quaternion
     155     2521572 :     quat2[i] = vals[4+i];
     156             :   }
     157             : 
     158             :   //make q1 the conjugate
     159      630393 :   quat1[1] *= -1;
     160      630393 :   quat1[2] *= -1;
     161      630393 :   quat1[3] *= -1;
     162             : 
     163             :   double pref=1;
     164             :   double pref2=1;
     165             :   double conj=1;
     166             :   //real part of q1*q2
     167     3151965 :   for(unsigned i=0; i<4; ++i) {
     168     2521572 :     if( i>0 ) {
     169             :       pref=-1;
     170             :       pref2=-1;
     171             :     }
     172     2521572 :     output.values[0] += pref*quat1[i]*quat2[i];
     173     2521572 :     if( noderiv ) {
     174     1640388 :       continue ;
     175             :     }
     176      881184 :     if (i>0) {
     177             :       conj=-1;
     178             :     }
     179      881184 :     output.derivs[0][i] = conj*pref*quat2[i];
     180      881184 :     output.derivs[0][4+i] = pref2*quat1[i];
     181             :   }
     182             :   //i component
     183             :   pref=1;
     184             :   conj=1;
     185             :   pref2=1;
     186     3151965 :   for(unsigned i=0; i<4; i++) {
     187     2521572 :     if(i==3) {
     188             :       pref=-1;
     189             :     } else {
     190             :       pref=1;
     191             :     }
     192     2521572 :     if(i==2) {
     193             :       pref2=-1;
     194             :     } else {
     195             :       pref2=1;
     196             :     }
     197     2521572 :     output.values[1] += pref*quat1[i]*quat2[(5-i)%4];
     198     2521572 :     if( noderiv ) {
     199     1640388 :       continue ;
     200             :     }
     201      881184 :     if (i>0) {
     202             :       conj=-1;
     203             :     }
     204      881184 :     output.derivs[1][i] = conj*pref*quat2[(5-i)%4];
     205      881184 :     output.derivs[1][4+i] = pref2*quat1[(5-i)%4];
     206             :   }
     207             : 
     208             :   //j component
     209             :   pref=1;
     210             :   conj=1;
     211             :   pref2=1;
     212     3151965 :   for (unsigned i=0; i<4; i++) {
     213     2521572 :     if(i==1) {
     214             :       pref=-1;
     215             :     } else {
     216             :       pref=1;
     217             :     }
     218     2521572 :     if (i==3) {
     219             :       pref2=-1;
     220             :     } else {
     221             :       pref2=1;
     222             :     }
     223     2521572 :     output.values[2] += pref*quat1[i]*quat2[(i+2)%4];
     224     2521572 :     if( noderiv ) {
     225     1640388 :       continue ;
     226             :     }
     227      881184 :     if (i>0) {
     228             :       conj=-1;
     229             :     }
     230      881184 :     output.derivs[2][i] = conj*pref*quat2[(i+2)%4];
     231      881184 :     output.derivs[2][4+i] = pref2*quat1[(i+2)%4];
     232             :   }
     233             : 
     234             :   //k component
     235             :   pref=1;
     236             :   conj=1;
     237             :   pref2=1;
     238     3151965 :   for (unsigned i=0; i<4; i++) {
     239     2521572 :     if(i==2) {
     240             :       pref=-1;
     241             :     } else {
     242             :       pref=1;
     243             :     }
     244     2521572 :     if(i==1) {
     245             :       pref2=-1;
     246             :     } else {
     247             :       pref2=1;
     248             :     }
     249     2521572 :     output.values[3] += pref*quat1[i]*quat2[(3-i)];
     250     2521572 :     if( noderiv ) {
     251     1640388 :       continue ;
     252             :     }
     253      881184 :     if (i>0) {
     254             :       conj=-1;
     255             :     }
     256      881184 :     output.derivs[3][i] = conj*pref*quat2[3-i];
     257      881184 :     output.derivs[3][4+i] = pref2*quat1[3-i];
     258             :   }
     259      630393 : }
     260             : 
     261             : }
     262             : }

Generated by: LCOV version 1.16