LCOV - code coverage report
Current view: top level - membranefusion - FusionPoreExpansionP.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 136 156 87.2 %
Date: 2025-12-04 11:19:34 Functions: 3 4 75.0 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             : Copyright (c) 2022.
       3             : 
       4             : CVs originally developed by the Jochen Hub group from the University of Saarland (Germany)
       5             : and adapted and implemented in PLUMED by Ary Lautaro Di Bartolo and Diego Masone from the
       6             : National University of Cuyo (Argentina).
       7             : 
       8             : The membranefusion module is free software: you can redistribute it and/or modify
       9             : it under the terms of the GNU Lesser General Public License as published by
      10             : the Free Software Foundation, either version 3 of the License, or
      11             : (at your option) any later version.
      12             : 
      13             : The membranefusion module is distributed in the hope that it will be useful,
      14             : but WITHOUT ANY WARRANTY; without even the implied warranty of
      15             : MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      16             : GNU Lesser General Public License for more details.
      17             : 
      18             : You should have received a copy of the GNU Lesser General Public License
      19             : along with plumed.  If not, see <http://www.gnu.org/licenses/>.
      20             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      21             : #include "colvar/Colvar.h"
      22             : #include "core/ActionRegister.h"
      23             : #include <cmath>
      24             : #ifdef __PLUMED_HAS_OPENACC
      25             : //there are some issues with nvc++ and the declaration of omp here
      26             : #undef _OPENMP
      27             : #endif
      28             : #ifdef _OPENMP
      29             : #if _OPENMP >= 201307
      30             : #include <omp.h>
      31             : #endif
      32             : #endif
      33             : 
      34             : namespace PLMD {
      35             : namespace membranefusion {
      36             : //+PLUMEDOC COLVAR FUSIONPOREEXPANSIONP
      37             : /*
      38             : A CV for inducing the expansion of a fusion pore from a nucleated fusion pore.
      39             : 
      40             : Calculate the collective variable designed by Hub (see paper below) and implemented into PLUMED by Masone and collaborators.
      41             : This CV is capable of inducing the expansion of the fusion pore from a nucleated fusion pore.
      42             : 
      43             : $$
      44             : \xi_e = \frac{R(r) - R_0}{R_0}
      45             : $$
      46             : 
      47             : Where $\xi_e$ is the CV, $R_0$ is a normalization constant that makes zero the initial value of $\xi_e$, and
      48             : $R(r)$ is the approximate radius of the fusion pore, which is defined by the number of waters and phosphateoxygens
      49             : beads within a horizontal layer in the center of both membranes.
      50             : 
      51             : ## Examples
      52             : 
      53             : This example induces the expansion of a nucleated fusion pore ($\xi_e = 0.75$) from a just nucleated fusion pore ($\xi_e = 0.00$).
      54             : 
      55             : ```plumed
      56             : lMem: GROUP ATOMS=1-10752,21505-22728,23953-24420 #All the lower membrane beads.
      57             : uMem: GROUP ATOMS=10753-21504,22729-23952,24421-24888 #All the upper membrane beads.
      58             : tails: GROUP ATOMS=8-23948:12,12-23952:12,23966-24884:18,23970-24888:18 #All the lipid tails beads (from the lower and upper membrane).
      59             : waters: GROUP ATOMS=24889-56589  #All the water beads.
      60             : po4: GROUP ATOMS=2-23942:12,23957-24875:18 #All the lipid phosphateoxygens beads.
      61             : 
      62             : fusionPoreExpansion: FUSIONPOREEXPANSIONP UMEMBRANE=uMem LMEMBRANE=lMem TAILS=tails WATERS=waters PHOSPHATEOXYGENS=po4 NSMEM=85 D=7.0 R0=0.57
      63             : 
      64             : MOVINGRESTRAINT ...
      65             :     ARG=fusionPoreExpansion
      66             :     STEP0=0 AT0=0.0 KAPPA0=10000.0
      67             :     STEP1=500000 AT1=0.75 KAPPA1=10000.0
      68             : ...
      69             : 
      70             : PRINT ARG=fusionPoreExpansion FILE=COLVAR STRIDE=1
      71             : ```
      72             : 
      73             : */
      74             : //+ENDPLUMEDOC
      75             : class fusionPoreExpansionP : public Colvar {
      76             :   std::vector<AtomNumber> UMEM, LMEM, TAILS, WATERS, POXYGENS;
      77             :   std::vector<double> NSMEM, DSMEM, HMEM, VO, D, H, RMAX, R0, XCYL, YCYL;
      78             : 
      79             : public:
      80             :   explicit fusionPoreExpansionP(const ActionOptions &);
      81             :   void calculate() override;
      82             :   static void registerKeywords(Keywords &keys);
      83             : };
      84             : 
      85             : PLUMED_REGISTER_ACTION(fusionPoreExpansionP, "FUSIONPOREEXPANSIONP")
      86             : 
      87           3 : void fusionPoreExpansionP::registerKeywords(Keywords &keys) {
      88           3 :   Colvar::registerKeywords(keys);
      89           3 :   keys.add("atoms", "UMEMBRANE", "all the beads of the upper membrane.");
      90           3 :   keys.add("atoms", "LMEMBRANE", "all the beads of the lower membrane.");
      91           3 :   keys.add("atoms", "TAILS", "all the tail beads of the system.");
      92           3 :   keys.add("atoms", "WATERS", "all the water beads of the system.");
      93           3 :   keys.add("atoms", "PHOSPHATEOXYGENS", "all the lipid phosphateoxygens beads of the system.");
      94           3 :   keys.add("compulsory", "NSMEM", "the number of slices of the membrane fusion cylinder.");
      95           3 :   keys.add("optional", "DSMEM", "( default=0.1 ) thickness of the slices of the membrane fusion cylinder.");
      96           3 :   keys.add("optional", "HMEM", "( default=0.25 ) parameter of the step function θ(x,h) for the membrane fusion.");
      97           3 :   keys.add("optional", "VO", "( default=0.076879 ) beads' molecular volume.");
      98           3 :   keys.add("compulsory", "D", "horizontal layer thickness, it depends on the Z separation of the membranes.");
      99           3 :   keys.add("optional", "H", "( default=0.1 ) parameter of the step function θ(x,h) for the fusion pore expansion.");
     100           3 :   keys.add("optional", "RMAX", "( default=2.5 ) to avoid effects of membrane undulations in large membranes (more than 256 lipids).");
     101           3 :   keys.add("compulsory", "R0", "normalization constant that makes 0 the initial value of the CV.");
     102           3 :   keys.add("optional", "XCYL", "X coordinate of the fixed cylinder, if not present this will be calculated.");
     103           3 :   keys.add("optional", "YCYL", "X coordinate of the fixed cylinder, if not present this will be calculated.");
     104           6 :   keys.setValueDescription("scalar","the value of the CV");
     105           3 :   keys.addDOI("10.1021/acs.jctc.0c01134");
     106           3 : }
     107             : 
     108           1 : fusionPoreExpansionP::fusionPoreExpansionP(const ActionOptions &ao) : PLUMED_COLVAR_INIT(ao) {
     109           2 :   parseAtomList("UMEMBRANE", UMEM);
     110           1 :   if (UMEM.size() == 0) {
     111           0 :     error("UMEMBRANE has not any atom specified.");
     112             :   }
     113             : 
     114           2 :   parseAtomList("LMEMBRANE", LMEM);
     115           1 :   if (LMEM.size() == 0) {
     116           0 :     error("LMEMBRANE has not any atom specified.");
     117             :   }
     118             : 
     119           2 :   parseAtomList("TAILS", TAILS);
     120           1 :   if (TAILS.size() == 0) {
     121           0 :     error("TAILS has not any atom specified.");
     122             :   }
     123             : 
     124           2 :   parseAtomList("WATERS", WATERS);
     125           1 :   if (WATERS.size() == 0) {
     126           0 :     error("WATERS has not any atom specified.");
     127             :   }
     128             : 
     129           2 :   parseAtomList("PHOSPHATEOXYGENS", POXYGENS);
     130           1 :   if (POXYGENS.size() == 0) {
     131           0 :     error("PHOSPHATEOXYGENS has not any atom specified.");
     132             :   }
     133             : 
     134           2 :   parseVector("NSMEM", NSMEM);
     135           1 :   if (NSMEM.size() > 1) {
     136           0 :     error("NSMEM cannot take more than one value.");
     137             :   }
     138             : 
     139           2 :   parseVector("DSMEM", DSMEM);
     140           1 :   if (DSMEM.size() > 1) {
     141           0 :     error("DSMEM cannot take more than one value.");
     142             :   }
     143           1 :   if (DSMEM.size() == 0) {
     144           0 :     DSMEM.push_back(0.1);
     145             :   }
     146             : 
     147           2 :   parseVector("HMEM", HMEM);
     148           1 :   if (HMEM.size() > 1) {
     149           0 :     error("HMEM cannot take more than one value.");
     150             :   }
     151           1 :   if (HMEM.size() == 0) {
     152           0 :     HMEM.push_back(0.25);
     153             :   }
     154             : 
     155           2 :   parseVector("VO", VO);
     156           1 :   if (VO.size() > 1) {
     157           0 :     error("VO cannot take more than one value.");
     158             :   }
     159           1 :   if (VO.size() == 0) {
     160           0 :     VO.push_back(0.076879);
     161             :   }
     162             : 
     163           2 :   parseVector("D", D);
     164           1 :   if (D.size() > 1) {
     165           0 :     error("D cannot take more than one value.");
     166             :   }
     167             : 
     168           2 :   parseVector("H", H);
     169           1 :   if (H.size() > 1) {
     170           0 :     error("H cannot take more than one value.");
     171             :   }
     172           1 :   if (H.size() == 0) {
     173           0 :     H.push_back(0.1);
     174             :   }
     175             : 
     176           2 :   parseVector("RMAX", RMAX);
     177           1 :   if (RMAX.size() > 1) {
     178           0 :     error("RMAX cannot take more than one value.");
     179             :   }
     180           1 :   if (RMAX.size() == 0) {
     181           0 :     RMAX.push_back(2.5);
     182             :   }
     183             : 
     184           2 :   parseVector("R0", R0);
     185           1 :   if (R0.size() > 1) {
     186           0 :     error("R0 cannot take more than one value.");
     187             :   }
     188             : 
     189           2 :   parseVector("XCYL", XCYL);
     190           1 :   if (XCYL.size() > 1) {
     191           0 :     error("XCYL cannot take more than one value.");
     192             :   }
     193           1 :   if (XCYL.size() == 0) {
     194           1 :     XCYL.push_back(-1.0);
     195             :   }
     196             : 
     197           2 :   parseVector("YCYL", YCYL);
     198           1 :   if (YCYL.size() > 1) {
     199           0 :     error("YCYL cannot take more than one value.");
     200             :   }
     201           1 :   if (YCYL.size() == 0) {
     202           1 :     YCYL.push_back(-1.0);
     203             :   }
     204             : 
     205           1 :   checkRead();
     206             : 
     207             :   std::vector<AtomNumber> atoms;
     208       12445 :   for (unsigned i = 0; i < UMEM.size(); i++) {
     209       12444 :     atoms.push_back(UMEM[i]);
     210             :   }
     211       12445 :   for (unsigned i = 0; i < LMEM.size(); i++) {
     212       12444 :     atoms.push_back(LMEM[i]);
     213             :   }
     214        4097 :   for (unsigned i = 0; i < TAILS.size(); i++) {
     215        4096 :     atoms.push_back(TAILS[i]);
     216             :   }
     217       31800 :   for (unsigned i = 0; i < WATERS.size(); i++) {
     218       31799 :     atoms.push_back(WATERS[i]);
     219             :   }
     220        2049 :   for (unsigned i = 0; i < POXYGENS.size(); i++) {
     221        2048 :     atoms.push_back(POXYGENS[i]);
     222             :   }
     223             : 
     224           1 :   addValueWithDerivatives();
     225           1 :   setNotPeriodic();
     226           1 :   requestAtoms(atoms);
     227           1 : }
     228           4 : void fusionPoreExpansionP::calculate() {
     229             :   /*************************
     230             :   *                        *
     231             :   *         System         *
     232             :   *                        *
     233             :   **************************/
     234             : 
     235             :   // Box dimensions.
     236           4 :   double Lx = getBox()[0][0], Ly = getBox()[1][1], Lz = getBox()[2][2];
     237             : 
     238             :   // Z center of the upper membrane (uMem) and lower membrane (lMem) for systems with PBC: https://en.wikipedia.org/wiki/Center_of_mass#Systems_with_periodic_boundary_conditions .
     239             :   double ZuMem, ZuMemcos = 0.0, ZuMemsin = 0.0, uMemAngle, ZlMem, ZlMemcos = 0.0, ZlMemsin = 0.0, lMemAngle;
     240             : 
     241             : #ifdef _OPENMP
     242             : #if _OPENMP >= 201307
     243           4 :   #pragma omp parallel for private(uMemAngle, lMemAngle) reduction(+:ZuMemcos, ZuMemsin, ZlMemcos, ZlMemsin)
     244             : #endif
     245             : #endif
     246             :   for (unsigned i = 0; i < UMEM.size(); i++) {
     247             :     uMemAngle = 2.0 * M_PI * getPbc().realToScaled(pbcDistance(Vector(0.0, 0.0, 0.0), getPosition(i)))[2];
     248             :     lMemAngle = 2.0 * M_PI * getPbc().realToScaled(pbcDistance(Vector(0.0, 0.0, 0.0), getPosition(i + UMEM.size())))[2];
     249             :     ZuMemcos += cos(uMemAngle);
     250             :     ZuMemsin += sin(uMemAngle);
     251             :     ZlMemcos += cos(lMemAngle);
     252             :     ZlMemsin += sin(lMemAngle);
     253             :   }
     254           4 :   ZuMemcos = ZuMemcos / UMEM.size();
     255           4 :   ZuMemsin = ZuMemsin / UMEM.size();
     256           4 :   ZuMem = Lz * (atan2(-ZuMemsin, -ZuMemcos) + M_PI) / (2.0 * M_PI);
     257           4 :   ZlMemcos = ZlMemcos / UMEM.size();
     258           4 :   ZlMemsin = ZlMemsin / UMEM.size();
     259           4 :   ZlMem = Lz * (atan2(-ZlMemsin, -ZlMemcos) + M_PI) / (2.0 * M_PI);
     260             : 
     261             :   // Z center of the boths membranes (upper and lower).
     262           4 :   double ZMems = (ZuMem + ZlMem) / 2.0;
     263             : 
     264             :   /**************************
     265             :   *                         *
     266             :   *   Xcyl_Mem & Ycyl_Mem   *
     267             :   *                         *
     268             :   ***************************/
     269             : 
     270             :   // Quantity of beads of the membranes.
     271           4 :   unsigned membraneBeads = UMEM.size() + LMEM.size();
     272             : 
     273             :   // Z distance from the lipid tail to the geometric center of both membranes.
     274             :   double ZTailDistance;
     275             : 
     276             :   // Z position of the first slice.
     277           4 :   double firstSliceZ_Mem = ZMems + (0.0 + 0.5 - NSMEM[0] / 2.0) * DSMEM[0];
     278             : 
     279             :   // Z distance between the first slice and the Z center of the membrane.
     280           4 :   double firstSliceZDist_Mem = pbcDistance(Vector(0.0, 0.0, firstSliceZ_Mem), Vector(0.0, 0.0, ZMems))[2];
     281             : 
     282             :   // Position in the cylinder.
     283             :   double PositionS_Mem;
     284             : 
     285             :   // Slices to analyze per particle.
     286             :   unsigned s1_Mem, s2_Mem;
     287             : 
     288             :   // Eq. 7 Hub & Awasthi JCTC 2017.
     289           4 :   std::vector<double> faxial_Mem(TAILS.size() * NSMEM[0]);
     290             : 
     291             :   // Eq. 10 Hub & Awasthi JCTC 2017.
     292           4 :   std::vector<double> Fs_Mem(NSMEM[0]);
     293             : 
     294             :   // Eq. 11 Hub & Awasthi JCTC 2017.
     295           4 :   std::vector<double> ws_Mem(NSMEM[0]);
     296             : 
     297             :   // Eq. 10 Hub & Awasthi JCTC 2017.
     298             :   double W_Mem = 0.0;
     299             : 
     300             :   // Eq. 21 and 22 Hub & Awasthi JCTC 2017.
     301           4 :   std::vector<double> sx_Mem(NSMEM[0]), sy_Mem(NSMEM[0]), cx_Mem(NSMEM[0]), cy_Mem(NSMEM[0]);
     302             : 
     303             :   // Eq. 10 Hub & Awasthi JCTC 2017.
     304             :   double Xsc_Mem = 0.0, Xcc_Mem = 0.0, Ysc_Mem = 0.0, Ycc_Mem = 0.0;
     305             : 
     306             :   // Aux.
     307             :   double x, aux;
     308             : 
     309             :   // Scaled position of the lipid tail respect the origin of coordinates.
     310             :   Vector TailPosition;
     311             : 
     312             : #ifdef _OPENMP
     313             : #if _OPENMP >= 201307
     314             :   #pragma omp declare reduction(vec_double_plus : std::vector<double> : \
     315             :   std::transform(omp_out.begin(), omp_out.end(), omp_in.begin(), omp_out.begin(), std::plus<double>())) \
     316             :   initializer(omp_priv = decltype(omp_orig)(omp_orig.size()))
     317             : #endif
     318             : #endif
     319             : 
     320             : #ifdef _OPENMP
     321             : #if _OPENMP >= 201307
     322           4 :   #pragma omp parallel for private(ZTailDistance, PositionS_Mem, TailPosition, x, aux, s1_Mem, s2_Mem) reduction(vec_double_plus:Fs_Mem, sx_Mem, sy_Mem, cx_Mem, cy_Mem)
     323             : #endif
     324             : #endif
     325             :   for (unsigned i = 0; i < TAILS.size(); i++) {
     326             :     ZTailDistance = pbcDistance(Vector(0.0, 0.0, ZMems), getPosition(i + membraneBeads))[2];
     327             :     PositionS_Mem = (ZTailDistance + firstSliceZDist_Mem) / DSMEM[0];
     328             :     // If the following condition is met the particle is in the Z space of the cylinder.
     329             :     if ((PositionS_Mem >= (-0.5 - HMEM[0])) && (PositionS_Mem <= (NSMEM[0] + 0.5 - 1.0 + HMEM[0]))) {
     330             :       //Defining the slices to analyze each particle.
     331             :       if (PositionS_Mem < 1) {
     332             :         s1_Mem = 0;
     333             :         s2_Mem = 2;
     334             :       } else if (PositionS_Mem <= (NSMEM[0] - 2.0)) {
     335             :         s1_Mem = floor(PositionS_Mem) - 1;
     336             :         s2_Mem = floor(PositionS_Mem) + 1;
     337             :       } else {
     338             :         s1_Mem = NSMEM[0] - 3;
     339             :         s2_Mem = NSMEM[0] - 1;
     340             :       }
     341             : 
     342             :       TailPosition = getPbc().realToScaled(pbcDistance(Vector(0.0, 0.0, 0.0), getPosition(i + membraneBeads)));
     343             : 
     344             :       for (unsigned s = s1_Mem; s <= s2_Mem; s++) {
     345             :         x = (ZTailDistance - (s + 0.5 - NSMEM[0] / 2.0) * DSMEM[0]) * 2.0 / DSMEM[0];
     346             :         if (!((x <= -1.0 - HMEM[0]) || (x >= 1.0 + HMEM[0]))) {
     347             :           if (((-1.0 + HMEM[0]) <= x) && (x <= (1.0 - HMEM[0]))) {
     348             :             faxial_Mem[i + TAILS.size() * s] = 1.0;
     349             :             Fs_Mem[s] += 1.0;
     350             :             sx_Mem[s] += sin(2.0 * M_PI * TailPosition[0]);
     351             :             sy_Mem[s] += sin(2.0 * M_PI * TailPosition[1]);
     352             :             cx_Mem[s] += cos(2.0 * M_PI * TailPosition[0]);
     353             :             cy_Mem[s] += cos(2.0 * M_PI * TailPosition[1]);
     354             :           } else if (((1.0 - HMEM[0]) < x) && (x < (1.0 + HMEM[0]))) {
     355             :             aux = 0.5 - ((3.0 * x - 3.0) / (4.0 * HMEM[0])) + (pow((x - 1.0), 3) / (4.0 * pow(HMEM[0], 3)));
     356             :             faxial_Mem[i + TAILS.size() * s] = aux;
     357             :             Fs_Mem[s] += aux;
     358             :             sx_Mem[s] += aux * sin(2.0 * M_PI * TailPosition[0]);
     359             :             sy_Mem[s] += aux * sin(2.0 * M_PI * TailPosition[1]);
     360             :             cx_Mem[s] += aux * cos(2.0 * M_PI * TailPosition[0]);
     361             :             cy_Mem[s] += aux * cos(2.0 * M_PI * TailPosition[1]);
     362             :           } else if (((-1.0 - HMEM[0]) < x) && (x < (-1.0 + HMEM[0]))) {
     363             :             aux = 0.5 + ((3.0 * x + 3.0) / (4.0 * HMEM[0])) - (pow((x + 1.0), 3) / (4.0 * pow(HMEM[0], 3)));
     364             :             faxial_Mem[i + TAILS.size() * s] = aux;
     365             :             Fs_Mem[s] += aux;
     366             :             sx_Mem[s] += (aux * sin(2.0 * M_PI * TailPosition[0]));
     367             :             sy_Mem[s] += (aux * sin(2.0 * M_PI * TailPosition[1]));
     368             :             cx_Mem[s] += (aux * cos(2.0 * M_PI * TailPosition[0]));
     369             :             cy_Mem[s] += (aux * cos(2.0 * M_PI * TailPosition[1]));
     370             :           }
     371             :         }
     372             :       }
     373             :     }
     374             :   }
     375             : 
     376         344 :   for (unsigned s = 0; s < NSMEM[0]; s++) {
     377         340 :     if (Fs_Mem[s] != 0.0) {
     378         340 :       ws_Mem[s] = tanh(Fs_Mem[s]);
     379         340 :       W_Mem += ws_Mem[s];
     380         340 :       sx_Mem[s] = sx_Mem[s] / Fs_Mem[s];
     381         340 :       sy_Mem[s] = sy_Mem[s] / Fs_Mem[s];
     382         340 :       cx_Mem[s] = cx_Mem[s] / Fs_Mem[s];
     383         340 :       cy_Mem[s] = cy_Mem[s] / Fs_Mem[s];
     384         340 :       Xsc_Mem += sx_Mem[s] * ws_Mem[s];
     385         340 :       Ysc_Mem += sy_Mem[s] * ws_Mem[s];
     386         340 :       Xcc_Mem += cx_Mem[s] * ws_Mem[s];
     387         340 :       Ycc_Mem += cy_Mem[s] * ws_Mem[s];
     388             :     }
     389             :   }
     390             : 
     391           4 :   Xsc_Mem = Xsc_Mem / W_Mem;
     392           4 :   Ysc_Mem = Ysc_Mem / W_Mem;
     393           4 :   Xcc_Mem = Xcc_Mem / W_Mem;
     394           4 :   Ycc_Mem = Ycc_Mem / W_Mem;
     395             : 
     396             :   // Eq. 12 Hub & Awasthi JCTC 2017.
     397             :   double Xcyl_Mem, Ycyl_Mem;
     398             : 
     399           4 :   if ((XCYL[0] > 0.0) && (YCYL[0] > 0.0)) {
     400             :     Xcyl_Mem = XCYL[0];
     401             :     Ycyl_Mem = YCYL[0];
     402             :   } else {
     403           4 :     Xcyl_Mem = (atan2(-Xsc_Mem, -Xcc_Mem) + M_PI) * Lx / (2 * M_PI);
     404           4 :     Ycyl_Mem = (atan2(-Ysc_Mem, -Ycc_Mem) + M_PI) * Ly / (2 * M_PI);
     405             :   }
     406             : 
     407             :   /*************************
     408             :   *                        *
     409             :   *         Xi_Exp         *
     410             :   *                        *
     411             :   **************************/
     412             : 
     413             :   // Quantity of beads that could participate in the calculation of the Xi_Chain
     414           4 :   unsigned chainBeads = WATERS.size() + POXYGENS.size();
     415             : 
     416             :   // Quantity of beads that don't participate in the calculation of the Xi_Chain
     417           4 :   unsigned noChainBeads = (UMEM.size() * 2) + TAILS.size();
     418             : 
     419             :   // Center of the cylinder. X and Y are calculated (or defined), Z is the Z component of the geometric center of the membranes.
     420           4 :   Vector xyzCyl = pbcDistance(Vector(0.0, 0.0, 0.0), Vector(Xcyl_Mem, Ycyl_Mem, ZMems));
     421             : 
     422             :   // Estimation of RO with the Hub 2021 JCTC method. Only needed for the expansion.
     423           4 :   double RO = R0[0];
     424             : 
     425             :   // Number of polar atoms inside the horizontal layer. Eq. 3 Hub 2021 JCTC.
     426             :   double np = 0.0, fz, fr, fz_prime, fr_prime;
     427             : 
     428             :   // Derivative of np. Eq. 8 Hub 2021 JCTC.
     429           4 :   std::vector<double> d_np_dx(chainBeads), d_np_dy(chainBeads), d_np_dz(chainBeads);
     430             : 
     431             :   // Pore radius of the defect. Eq. 2 Hub 2021 JCTC.
     432             :   double poreR = 1.0;
     433             : 
     434             :   // Z center of the Membrane in the RMAX radius.
     435             :   double ZMemRMAX, ZMemRMAXcos = 0.0, ZMemRMAXsin = 0.0, countAux = 0.0, auxcos, auxsin;
     436             : 
     437             :   ZMemRMAX = ZMems;
     438             : 
     439             :   // The curvature of large membranes (1024 lipids) makes the Z-center of the membranes not to be representative
     440             :   // in some sectors, particularly in the region of ​​the defect.
     441             :   //
     442             :   // To solve this, the center Z of the membranes in the defect sector is calculated and used to calculate
     443             :   // the number of polar atoms within the horizontal layer AND in the radious of the defect.
     444             :   //
     445             :   // ________       | |       ________
     446             :   // ________ \_____| |______/ _______<-- Top membrane.
     447             :   //         \______|P|_______/
     448             :   //                |O|
     449             :   //                | |               <-- Z-center of the membranes in the region of the defect.
     450             :   //          ______|R|_______        <-- Z-center of the membranes
     451             :   //         / _____|E|______ \ 
     452             :   //        / /     | |      \ \ 
     453             :   // ______/ /      | |       \ \______
     454             :   // _______/                  \_______<-- Bottom membrane.
     455             : 
     456             :   // Center of mass for systems with PBC: https://en.wikipedia.org/wiki/Center_of_mass#Systems_with_periodic_boundary_conditions
     457             :   Vector MemCylDistances, distCylinder;
     458             :   double angle, ri;
     459             : 
     460             : #ifdef _OPENMP
     461             : #if _OPENMP >= 201307
     462           4 :   #pragma omp parallel for private(MemCylDistances, x, angle, auxcos, auxsin) reduction(+:ZMemRMAXcos, ZMemRMAXsin, countAux)
     463             : #endif
     464             : #endif
     465             :   for (unsigned i = 0; i < membraneBeads; i++) {
     466             :   MemCylDistances = pbcDistance(xyzCyl, pbcDistance(Vector(0.0, 0.0, 0.0), getPosition(i)));
     467             :     x = sqrt(pow(MemCylDistances[0], 2) + pow(MemCylDistances[1], 2)) / RMAX[0];
     468             :     if (!((x <= -1.0 - H[0]) || (x >= 1.0 + H[0]))) {
     469             :       angle = 2.0 * M_PI * getPbc().realToScaled(pbcDistance(Vector(0.0, 0.0, 0.0), getPosition(i)))[2];
     470             :       auxcos = cos(angle);
     471             :       auxsin = sin(angle);
     472             :       if (((-1.0 + H[0]) <= x) && (x <= (1.0 - H[0]))) {
     473             :         ZMemRMAXcos += 1.0 * auxcos;
     474             :         ZMemRMAXsin += 1.0 * auxsin;
     475             :         countAux += 1.0;
     476             :       } else if (((1.0 - H[0]) < x) && (x < (1.0 + H[0]))) {
     477             :         ZMemRMAXcos += (0.5 - 0.75 * (x - 1.0) / H[0] + 0.25 * pow((x - 1.0), 3) / pow(H[0], 3)) * auxcos;
     478             :         ZMemRMAXsin += (0.5 - 0.75 * (x - 1.0) / H[0] + 0.25 * pow((x - 1.0), 3) / pow(H[0], 3)) * auxsin;
     479             :         countAux += (0.5 - 0.75 * (x - 1.0) / H[0] + 0.25 * pow((x - 1.0), 3) / pow(H[0], 3));
     480             :       } else if (((-1.0 - H[0]) < x) && (x < (-1.0 + H[0]))) {
     481             :         ZMemRMAXcos += (0.5 + 0.75 * (x + 1.0) / H[0] - 0.25 * pow((x + 1.0), 3) / pow(H[0], 3)) * auxcos;
     482             :         ZMemRMAXsin += (0.5 + 0.75 * (x + 1.0) / H[0] - 0.25 * pow((x + 1.0), 3) / pow(H[0], 3)) * auxsin;
     483             :         countAux += (0.5 + 0.75 * (x + 1.0) / H[0] - 0.25 * pow((x + 1.0), 3) / pow(H[0], 3));
     484             :       }
     485             :     }
     486             :   }
     487             : 
     488           4 :   ZMemRMAXcos = ZMemRMAXcos / countAux;
     489           4 :   ZMemRMAXsin = ZMemRMAXsin / countAux;
     490           4 :   ZMemRMAX = Lz * (atan2(-ZMemRMAXsin, -ZMemRMAXcos) + M_PI) / (2.0 * M_PI);
     491             : 
     492           4 :   xyzCyl = pbcDistance(Vector(0.0, 0.0, 0.0), Vector(Xcyl_Mem, Ycyl_Mem, ZMemRMAX));
     493             : 
     494             : #ifdef _OPENMP
     495             : #if _OPENMP >= 201307
     496           4 :   #pragma omp parallel for private(distCylinder, fz, fz_prime, fr, fr_prime, ri, x) reduction(+:np)
     497             : #endif
     498             : #endif
     499             :   for (unsigned i = 0; i < chainBeads; i++) {
     500             :   distCylinder = pbcDistance(xyzCyl, pbcDistance(Vector(0.0, 0.0, 0.0), getPosition(i + noChainBeads)));
     501             :     fz = 0.0;
     502             :     fz_prime = 0.0;
     503             :     fr = 0.0;
     504             :     fr_prime = 0.0;
     505             : 
     506             :     ri = sqrt(pow(distCylinder[0], 2) + pow(distCylinder[1], 2));
     507             :     x = ri / RMAX[0];
     508             :     if (!((x <= -1.0 - H[0]) || (x >= 1.0 + H[0]))) {
     509             :       if (((-1.0 + H[0]) <= x) && (x <= (1.0 - H[0]))) {
     510             :         fr = 1.0;
     511             :       } else if (((1.0 - H[0]) < x) && (x < (1.0 + H[0]))) {
     512             :         fr = 0.5 - 0.75 * (x - 1.0) / H[0] + 0.25 * pow((x - 1.0), 3) / pow(H[0], 3);
     513             :         fr_prime = (-0.75 / H[0] + 0.75 * pow((x - 1.0), 2) / pow(H[0], 3)) / (RMAX[0] * ri);
     514             :       } else if (((-1.0 - H[0]) < x) && (x < (-1.0 + H[0]))) {
     515             :         fr = 0.5 + 0.75 * (x + 1.0) / H[0] - 0.25 * pow((x + 1.0), 3) / pow(H[0], 3);
     516             :         fr_prime = (0.75 / H[0] - 0.75 * pow((x + 1), 2) / pow(H[0], 3)) / (RMAX[0] * ri);
     517             :       }
     518             : 
     519             :       x = distCylinder[2] * 2.0 / D[0];
     520             :       if (!((x <= -1.0 - H[0]) || (x >= 1.0 + H[0]))) {
     521             :         if (((-1.0 + H[0]) <= x) && (x <= (1.0 - H[0]))) {
     522             :           fz = 1.0;
     523             :         } else if (((1.0 - H[0]) < x) && (x < (1.0 + H[0]))) {
     524             :           fz = 0.5 - 0.75 * (x - 1.0) / H[0] + 0.25 * pow((x - 1.0), 3) / pow(H[0], 3);
     525             :           fz_prime = (-0.75 / H[0] + 0.75 * pow((x - 1.0), 2) / pow(H[0], 3)) * 2.0 / D[0];
     526             :         } else if (((-1.0 - H[0]) < x) && (x < (-1.0 + H[0]))) {
     527             :           fz = 0.5 + 0.75 * (x + 1.0) / H[0] - 0.25 * pow((x + 1.0), 3) / pow(H[0], 3);
     528             :           fz_prime = (0.75 / H[0] - 0.75 * pow((x + 1), 2) / pow(H[0], 3)) * 2.0 / D[0];
     529             :         }
     530             : 
     531             :         np += fz * fr;
     532             :         d_np_dx[i] = fz * fr_prime * distCylinder[0];
     533             :         d_np_dy[i] = fz * fr_prime * distCylinder[1];
     534             :         d_np_dz[i] = fz_prime * fr;
     535             :       }
     536             :     }
     537             :   }
     538           4 :   poreR = sqrt(np * VO[0] / (M_PI * D[0]));
     539             : 
     540             :   // This is the CV that describes the Pore Expansion.
     541           4 :   double Xi_Exp = (poreR - RO) / RO;
     542             : 
     543             :   // Derivatives vector.
     544           4 :   std::vector<Vector> derivatives(chainBeads);
     545             : 
     546             :   // Aux for the derivatives calculations. Eq. 7 Hub 2021 JCTC.
     547             :   double fact2 = 0.0;
     548             : 
     549           4 :   if (poreR != 0.0) {
     550           4 :   fact2 = VO[0] / (2.0 * M_PI * RO * D[0] * poreR);
     551             :   }
     552             : 
     553             :   // Distances from the oxygens to center of the cylinder.
     554           4 :   std::vector<Vector> CylDistances(chainBeads);
     555             : 
     556             : #ifdef _OPENMP
     557             : #if _OPENMP >= 201307
     558           4 :   #pragma omp parallel for
     559             : #endif
     560             : #endif
     561             :   for (unsigned i = 0; i < chainBeads; i++) {
     562             :   derivatives[i][0] = fact2 * d_np_dx[i];
     563             :     derivatives[i][1] = fact2 * d_np_dy[i];
     564             :     derivatives[i][2] = fact2 * d_np_dz[i];
     565             :     CylDistances[i] = pbcDistance(xyzCyl, pbcDistance(Vector(0.0, 0.0, 0.0), getPosition(i + noChainBeads)));
     566             :   }
     567             : 
     568             :   Tensor virial;
     569      135392 :   for (unsigned i = 0; i < chainBeads; i++) {
     570      135388 :   setAtomsDerivatives((i + noChainBeads), derivatives[i]);
     571      270776 :     virial -= Tensor(CylDistances[i], derivatives[i]);
     572             :   }
     573             : 
     574           4 :   setValue(Xi_Exp);
     575           4 :   setBoxDerivatives(virial);
     576           4 : }
     577             : }
     578             : }

Generated by: LCOV version 1.16