LCOV - code coverage report
Current view: top level - membranefusion - FusionPoreNucleationP.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 181 205 88.3 %
Date: 2025-12-04 11:19:34 Functions: 3 4 75.0 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             : Copyright (c) 2022.
       3             : 
       4             : CVs originally developed by the Jochen Hub group from the University of Saarland (Germany)
       5             : and adapted and implemented in PLUMED by Ary Lautaro Di Bartolo and Diego Masone from the
       6             : National University of Cuyo (Argentina).
       7             : 
       8             : The membranefusion module is free software: you can redistribute it and/or modify
       9             : it under the terms of the GNU Lesser General Public License as published by
      10             : the Free Software Foundation, either version 3 of the License, or
      11             : (at your option) any later version.
      12             : 
      13             : The membranefusion module is distributed in the hope that it will be useful,
      14             : but WITHOUT ANY WARRANTY; without even the implied warranty of
      15             : MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      16             : GNU Lesser General Public License for more details.
      17             : 
      18             : You should have received a copy of the GNU Lesser General Public License
      19             : along with plumed.  If not, see <http://www.gnu.org/licenses/>.
      20             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      21             : #include "colvar/Colvar.h"
      22             : #include "core/ActionRegister.h"
      23             : #include <cmath>
      24             : #ifdef __PLUMED_HAS_OPENACC
      25             : //there are some issues with nvc++ and the declaration of omp here
      26             : #undef _OPENMP
      27             : #endif
      28             : #ifdef _OPENMP
      29             : #if _OPENMP >= 201307
      30             : #include <omp.h>
      31             : #endif
      32             : #endif
      33             : 
      34             : namespace PLMD {
      35             : namespace membranefusion {
      36             : //+PLUMEDOC COLVAR FUSIONPORENUCLEATIONP
      37             : /*
      38             : A CV for inducing the nucleation of the fusion pore from a hemifusion stalk.
      39             : 
      40             : Calculate the collective variable designed by Hub and collaborators (see paper below) and
      41             : implemented into PLUMED by Masone and collaborators.
      42             : This CV is capable of inducing the nucleation of the fusion pore from a hemifusion stalk.
      43             : 
      44             : $$
      45             : \xi_n = \frac{1}{N_{sn}} \sum_{s=0}^{N_{sn}-1} \delta_{sn} (N_{sn}^{(p)})
      46             : $$
      47             : 
      48             : Where $\xi_n$ is the CV, $N_{sn}$ is the number of slices of the cylinder that make up the CV,
      49             : $\delta_{sn}$ is a continuos function in the interval [0 1] ($\delta_{sf} = 0$ for no beads in the slice s, and
      50             : $\delta_{sf} = 1$ for 1 or more beads in the slice s) and $N_{sf}^{(p)}$ accounts for the number of water and
      51             : phosphateoxygens beads within the slice s.
      52             : 
      53             : ## Examples
      54             : 
      55             : This example induces the nucleation of the fusion pore ($\xi_n = 1.0$) from a hemifusion stalk ($\xi_n = 0.2$).
      56             : 
      57             : ```plumed
      58             : 
      59             : lMem: GROUP ATOMS=1-10752,21505-22728,23953-24420 #All the lower membrane beads.
      60             : uMem: GROUP ATOMS=10753-21504,22729-23952,24421-24888 #All the upper membrane beads.
      61             : tails: GROUP ATOMS=8-23948:12,12-23952:12,23966-24884:18,23970-24888:18 #All the lipid tails beads (from the lower and upper membrane).
      62             : waters: GROUP ATOMS=24889-56490 #All the water beads.
      63             : po4: GROUP ATOMS=2-23942:12,23957-24875:18 #All the lipid phosphateoxygens beads.
      64             : 
      65             : fusionPoreNucleation: FUSIONPORENUCLEATIONP UMEMBRANE=uMem LMEMBRANE=lMem TAILS=tails WATERS=waters PHOSPHATEOXYGENS=po4 NSMEM=85 NS=45
      66             : 
      67             : MOVINGRESTRAINT ...
      68             :     ARG=fusionPoreNucleation
      69             :     STEP0=0 AT0=0.2 KAPPA0=10000.0
      70             :     STEP1=500000 AT1=1.0 KAPPA1=10000.0
      71             : ...
      72             : 
      73             : PRINT ARG=fusionPoreNucleation FILE=COLVAR STRIDE=1
      74             : 
      75             : ```
      76             : 
      77             : */
      78             : //+ENDPLUMEDOC
      79             : class fusionPoreNucleationP : public Colvar {
      80             :   std::vector<AtomNumber> UMEM, LMEM, TAILS, WATERS, POXYGENS;
      81             :   std::vector<double> NSMEM, DSMEM, HMEM, NS, DS, HCH, RCYL, ZETA, ONEOVERS2C2CUTOFF, XCYL, YCYL;
      82             : 
      83             : public:
      84             :   explicit fusionPoreNucleationP(const ActionOptions &);
      85             :   void calculate() override;
      86             :   static void registerKeywords(Keywords &keys);
      87             : };
      88             : 
      89             : PLUMED_REGISTER_ACTION(fusionPoreNucleationP, "FUSIONPORENUCLEATIONP")
      90             : 
      91           3 : void fusionPoreNucleationP::registerKeywords(Keywords &keys) {
      92           3 :   Colvar::registerKeywords(keys);
      93           3 :   keys.add("atoms", "UMEMBRANE", "all the beads of the upper membrane.");
      94           3 :   keys.add("atoms", "LMEMBRANE", "all the beads of the lower membrane.");
      95           3 :   keys.add("atoms", "TAILS", "all the tail beads of the system.");
      96           3 :   keys.add("atoms", "WATERS", "all the water beads of the system.");
      97           3 :   keys.add("atoms", "PHOSPHATEOXYGENS", "all the lipid phosphateoxygens beads of the system.");
      98           3 :   keys.add("compulsory", "NSMEM", "the number of slices of the membrane fusion cylinder.");
      99           3 :   keys.add("optional", "DSMEM", "( default=0.1 ) thickness of the slices of the membrane fusion cylinder.");
     100           3 :   keys.add("optional", "HMEM", "( default=0.25 ) parameter of the step function θ(x,h) for the membrane fusion.");
     101           3 :   keys.add("compulsory", "NS", "the number of slices of the membrane-spanning cylinder in such a way that when the bilayers are flat and parallel the CV is equal to 0.2.");
     102           3 :   keys.add("optional", "DS", "( default=0.25 ) thickness of the slices of the membrane-spanning cylinder.");
     103           3 :   keys.add("optional", "HCH", "( default=0.25 ) parameter of the step function θ(x,h) for the CV.");
     104           3 :   keys.add("optional", "RCYL", "( default=0.8 ) the radius of the membrane-spanning cylinder.");
     105           3 :   keys.add("optional", "ZETA", "( default=0.75 ) parameter of the switch function ψ(x,ζ).");
     106           3 :   keys.add("optional", "ONEOVERS2C2CUTOFF", "( default=500 ) cut off large values for the derivative of the atan2 function to avoid violate energy.");
     107           3 :   keys.add("optional", "XCYL", "X coordinate of the fixed cylinder, if not present this will be calculated.");
     108           3 :   keys.add("optional", "YCYL", "X coordinate of the fixed cylinder, if not present this will be calculated.");
     109           6 :   keys.setValueDescription("scalar","the value of the CV");
     110           3 :   keys.addDOI("10.1021/acs.jctc.7b00106");
     111           3 : }
     112             : 
     113           1 : fusionPoreNucleationP::fusionPoreNucleationP(const ActionOptions &ao) : PLUMED_COLVAR_INIT(ao) {
     114           2 :   parseAtomList("UMEMBRANE", UMEM);
     115           1 :   if (UMEM.size() == 0) {
     116           0 :     error("UMEMBRANE has not any atom specified.");
     117             :   }
     118             : 
     119           2 :   parseAtomList("LMEMBRANE", LMEM);
     120           1 :   if (LMEM.size() == 0) {
     121           0 :     error("LMEMBRANE has not any atom specified.");
     122             :   }
     123             : 
     124           2 :   parseAtomList("TAILS", TAILS);
     125           1 :   if (TAILS.size() == 0) {
     126           0 :     error("TAILS has not any atom specified.");
     127             :   }
     128             : 
     129           2 :   parseAtomList("WATERS", WATERS);
     130           1 :   if (WATERS.size() == 0) {
     131           0 :     error("WATERS has not any atom specified.");
     132             :   }
     133             : 
     134           2 :   parseAtomList("PHOSPHATEOXYGENS", POXYGENS);
     135           1 :   if (POXYGENS.size() == 0) {
     136           0 :     error("PHOSPHATEOXYGENS has not any atom specified.");
     137             :   }
     138             : 
     139           2 :   parseVector("NSMEM", NSMEM);
     140           1 :   if (NSMEM.size() > 1) {
     141           0 :     error("NSMEM cannot take more than one value.");
     142             :   }
     143             : 
     144           2 :   parseVector("DSMEM", DSMEM);
     145           1 :   if (DSMEM.size() > 1) {
     146           0 :     error("DSMEM cannot take more than one value.");
     147             :   }
     148           1 :   if (DSMEM.size() == 0) {
     149           0 :     DSMEM.push_back(0.1);
     150             :   }
     151             : 
     152           2 :   parseVector("HMEM", HMEM);
     153           1 :   if (HMEM.size() > 1) {
     154           0 :     error("HMEM cannot take more than one value.");
     155             :   }
     156           1 :   if (HMEM.size() == 0) {
     157           0 :     HMEM.push_back(0.25);
     158             :   }
     159             : 
     160           2 :   parseVector("NS", NS);
     161           1 :   if (NS.size() > 1) {
     162           0 :     error("NS cannot take more than one value.");
     163             :   }
     164             : 
     165           2 :   parseVector("DS", DS);
     166           1 :   if (DS.size() > 1) {
     167           0 :     error("DS cannot take more than one value.");
     168             :   }
     169           1 :   if (DS.size() == 0) {
     170           0 :     DS.push_back(0.25);
     171             :   }
     172             : 
     173           2 :   parseVector("HCH", HCH);
     174           1 :   if (HCH.size() > 1) {
     175           0 :     error("H cannot take more than one value.");
     176             :   }
     177           1 :   if (HCH.size() == 0) {
     178           0 :     HCH.push_back(0.25);
     179             :   }
     180             : 
     181           2 :   parseVector("RCYL", RCYL);
     182           1 :   if (RCYL.size() > 1) {
     183           0 :     error("RCYL cannot take more than one value.");
     184             :   }
     185           1 :   if (RCYL.size() == 0) {
     186           0 :     RCYL.push_back(0.8);
     187             :   }
     188             : 
     189           2 :   parseVector("ZETA", ZETA);
     190           1 :   if (ZETA.size() > 1) {
     191           0 :     error("ZETA cannot take more than one value.");
     192             :   }
     193           1 :   if (ZETA.size() == 0) {
     194           0 :     ZETA.push_back(0.75);
     195             :   }
     196             : 
     197           2 :   parseVector("ONEOVERS2C2CUTOFF", ONEOVERS2C2CUTOFF);
     198           1 :   if (ONEOVERS2C2CUTOFF.size() > 1) {
     199           0 :     error("ONEOVERS2C2CUTOFF cannot take more than one value.");
     200             :   }
     201           1 :   if (ONEOVERS2C2CUTOFF.size() == 0) {
     202           1 :     ONEOVERS2C2CUTOFF.push_back(500);
     203             :   }
     204             : 
     205           2 :   parseVector("XCYL", XCYL);
     206           1 :   if (XCYL.size() > 1) {
     207           0 :     error("XCYL cannot take more than one value.");
     208             :   }
     209           1 :   if (XCYL.size() == 0) {
     210           1 :     XCYL.push_back(-1.0);
     211             :   }
     212             : 
     213           2 :   parseVector("YCYL", YCYL);
     214           1 :   if (YCYL.size() > 1) {
     215           0 :     error("YCYL cannot take more than one value.");
     216             :   }
     217           1 :   if (YCYL.size() == 0) {
     218           1 :     YCYL.push_back(-1.0);
     219             :   }
     220             : 
     221           1 :   checkRead();
     222             : 
     223             :   std::vector<AtomNumber> atoms;
     224       12445 :   for (unsigned i = 0; i < UMEM.size(); i++) {
     225       12444 :     atoms.push_back(UMEM[i]);
     226             :   }
     227       12445 :   for (unsigned i = 0; i < LMEM.size(); i++) {
     228       12444 :     atoms.push_back(LMEM[i]);
     229             :   }
     230        4097 :   for (unsigned i = 0; i < TAILS.size(); i++) {
     231        4096 :     atoms.push_back(TAILS[i]);
     232             :   }
     233       31603 :   for (unsigned i = 0; i < WATERS.size(); i++) {
     234       31602 :     atoms.push_back(WATERS[i]);
     235             :   }
     236        2049 :   for (unsigned i = 0; i < POXYGENS.size(); i++) {
     237        2048 :     atoms.push_back(POXYGENS[i]);
     238             :   }
     239             : 
     240           1 :   addValueWithDerivatives();
     241           1 :   setNotPeriodic();
     242           1 :   requestAtoms(atoms);
     243           1 : }
     244             : 
     245           4 : void fusionPoreNucleationP::calculate() {
     246             :   /*************************
     247             :   *                        *
     248             :   *         System         *
     249             :   *                        *
     250             :   **************************/
     251             : 
     252             :   // Box dimensions.
     253           4 :   double Lx = getBox()[0][0], Ly = getBox()[1][1], Lz = getBox()[2][2];
     254             : 
     255             :   // Z center of the upper membrane (uMem) and lower membrane (lMem) for systems with PBC: https://en.wikipedia.org/wiki/Center_of_mass#Systems_with_periodic_boundary_conditions .
     256             :   double ZuMem, ZuMemcos = 0.0, ZuMemsin = 0.0, uMemAngle, ZlMem, ZlMemcos = 0.0, ZlMemsin = 0.0, lMemAngle;
     257             : 
     258             : #ifdef _OPENMP
     259             : #if _OPENMP >= 201307
     260           4 :   #pragma omp parallel for private(uMemAngle, lMemAngle) reduction(+:ZuMemcos, ZuMemsin, ZlMemcos, ZlMemsin)
     261             : #endif
     262             : #endif
     263             :   for (unsigned i = 0; i < UMEM.size(); i++) {
     264             :     uMemAngle = 2.0 * M_PI * getPbc().realToScaled(pbcDistance(Vector(0.0, 0.0, 0.0), getPosition(i)))[2];
     265             :     lMemAngle = 2.0 * M_PI * getPbc().realToScaled(pbcDistance(Vector(0.0, 0.0, 0.0), getPosition(i + UMEM.size())))[2];
     266             :     ZuMemcos += cos(uMemAngle);
     267             :     ZuMemsin += sin(uMemAngle);
     268             :     ZlMemcos += cos(lMemAngle);
     269             :     ZlMemsin += sin(lMemAngle);
     270             :   }
     271           4 :   ZuMemcos = ZuMemcos / UMEM.size();
     272           4 :   ZuMemsin = ZuMemsin / UMEM.size();
     273           4 :   ZuMem = Lz * (atan2(-ZuMemsin, -ZuMemcos) + M_PI) / (2.0 * M_PI);
     274           4 :   ZlMemcos = ZlMemcos / UMEM.size();
     275           4 :   ZlMemsin = ZlMemsin / UMEM.size();
     276           4 :   ZlMem = Lz * (atan2(-ZlMemsin, -ZlMemcos) + M_PI) / (2.0 * M_PI);
     277             : 
     278             :   // Z center of the boths membranes (upper and lower).
     279           4 :   double ZMems = (ZuMem + ZlMem) / 2.0;
     280             : 
     281             :   /**************************
     282             :   *                         *
     283             :   *   Xcyl_Mem & Ycyl_Mem   *
     284             :   *                         *
     285             :   ***************************/
     286             : 
     287             :   // Quantity of beads of the membranes.
     288           4 :   unsigned membraneBeads = UMEM.size() + LMEM.size();
     289             : 
     290             :   // Z distance from the lipid tail to the geometric center of both membranes.
     291             :   double ZTailDistance;
     292             : 
     293             :   // Z position of the first slice.
     294           4 :   double firstSliceZ_Mem = ZMems + (0.0 + 0.5 - NSMEM[0] / 2.0) * DSMEM[0];
     295             : 
     296             :   // Z distance between the first slice and the Z center of the membrane.
     297           4 :   double firstSliceZDist_Mem = pbcDistance(Vector(0.0, 0.0, firstSliceZ_Mem), Vector(0.0, 0.0, ZMems))[2];
     298             : 
     299             :   // Position in the cylinder.
     300             :   double PositionS_Mem;
     301             : 
     302             :   // Slices to analyze per particle.
     303             :   unsigned s1_Mem, s2_Mem;
     304             : 
     305             :   // Eq. 7 Hub & Awasthi JCTC 2017.
     306           4 :   std::vector<double> faxial_Mem(TAILS.size() * NSMEM[0]);
     307             : 
     308             :   // Eq. 10 Hub & Awasthi JCTC 2017.
     309           4 :   std::vector<double> Fs_Mem(NSMEM[0]);
     310             : 
     311             :   // Eq. 11 Hub & Awasthi JCTC 2017.
     312           4 :   std::vector<double> ws_Mem(NSMEM[0]);
     313             : 
     314             :   // Eq. 10 Hub & Awasthi JCTC 2017.
     315             :   double W_Mem = 0.0;
     316             : 
     317             :   // Eq. 21 and 22 Hub & Awasthi JCTC 2017.
     318           4 :   std::vector<double> sx_Mem(NSMEM[0]), sy_Mem(NSMEM[0]), cx_Mem(NSMEM[0]), cy_Mem(NSMEM[0]);
     319             : 
     320             :   // Eq. 10 Hub & Awasthi JCTC 2017.
     321             :   double Xsc_Mem = 0.0, Xcc_Mem = 0.0, Ysc_Mem = 0.0, Ycc_Mem = 0.0;
     322             : 
     323             :   // Aux.
     324             :   double x, aux;
     325             : 
     326             :   // Scaled position of the lipid tail respect the origin of coordinates.
     327             :   Vector TailPosition;
     328             : 
     329             : #ifdef _OPENMP
     330             : #if _OPENMP >= 201307
     331             :   #pragma omp declare reduction(vec_double_plus : std::vector<double> : \
     332             :   std::transform(omp_out.begin(), omp_out.end(), omp_in.begin(), omp_out.begin(), std::plus<double>())) \
     333             :   initializer(omp_priv = decltype(omp_orig)(omp_orig.size()))
     334             : #endif
     335             : #endif
     336             : 
     337             : #ifdef _OPENMP
     338             : #if _OPENMP >= 201307
     339           4 :   #pragma omp parallel for private(ZTailDistance, PositionS_Mem, s1_Mem, s2_Mem, TailPosition, x, aux) reduction(vec_double_plus:Fs_Mem, sx_Mem, sy_Mem, cx_Mem, cy_Mem)
     340             : #endif
     341             : #endif
     342             :   for (unsigned i = 0; i < TAILS.size(); i++) {
     343             :     ZTailDistance = pbcDistance(Vector(0.0, 0.0, ZMems), getPosition(i + membraneBeads))[2];
     344             :     PositionS_Mem = (ZTailDistance + firstSliceZDist_Mem) / DSMEM[0];
     345             :     // If the following condition is met the particle is in the Z space of the cylinder.
     346             :     if ((PositionS_Mem >= (-0.5 - HMEM[0])) && (PositionS_Mem <= (NSMEM[0] + 0.5 - 1.0 + HMEM[0]))) {
     347             :       //Defining the slices to analyze each particle.
     348             :       if (PositionS_Mem < 1) {
     349             :         s1_Mem = 0;
     350             :         s2_Mem = 2;
     351             :       } else if (PositionS_Mem <= (NSMEM[0] - 2.0)) {
     352             :         s1_Mem = floor(PositionS_Mem) - 1;
     353             :         s2_Mem = floor(PositionS_Mem) + 1;
     354             :       } else {
     355             :         s1_Mem = NSMEM[0] - 3;
     356             :         s2_Mem = NSMEM[0] - 1;
     357             :       }
     358             : 
     359             :       TailPosition = getPbc().realToScaled(pbcDistance(Vector(0.0, 0.0, 0.0), getPosition(i + membraneBeads)));
     360             : 
     361             :       for (unsigned s = s1_Mem; s <= s2_Mem; s++) {
     362             :         x = (ZTailDistance - (s + 0.5 - NSMEM[0] / 2.0) * DSMEM[0]) * 2.0 / DSMEM[0];
     363             :         if (!((x <= -1.0 - HMEM[0]) || (x >= 1.0 + HMEM[0]))) {
     364             :           if (((-1.0 + HMEM[0]) <= x) && (x <= (1.0 - HMEM[0]))) {
     365             :             faxial_Mem[i + TAILS.size() * s] = 1.0;
     366             :             Fs_Mem[s] += 1.0;
     367             :             sx_Mem[s] += sin(2.0 * M_PI * TailPosition[0]);
     368             :             sy_Mem[s] += sin(2.0 * M_PI * TailPosition[1]);
     369             :             cx_Mem[s] += cos(2.0 * M_PI * TailPosition[0]);
     370             :             cy_Mem[s] += cos(2.0 * M_PI * TailPosition[1]);
     371             :           } else if (((1.0 - HMEM[0]) < x) && (x < (1.0 + HMEM[0]))) {
     372             :             aux = 0.5 - ((3.0 * x - 3.0) / (4.0 * HMEM[0])) + (pow((x - 1.0), 3) / (4.0 * pow(HMEM[0], 3)));
     373             :             faxial_Mem[i + TAILS.size() * s] = aux;
     374             :             Fs_Mem[s] += aux;
     375             :             sx_Mem[s] += aux * sin(2.0 * M_PI * TailPosition[0]);
     376             :             sy_Mem[s] += aux * sin(2.0 * M_PI * TailPosition[1]);
     377             :             cx_Mem[s] += aux * cos(2.0 * M_PI * TailPosition[0]);
     378             :             cy_Mem[s] += aux * cos(2.0 * M_PI * TailPosition[1]);
     379             :           } else if (((-1.0 - HMEM[0]) < x) && (x < (-1.0 + HMEM[0]))) {
     380             :             aux = 0.5 + ((3.0 * x + 3.0) / (4.0 * HMEM[0])) - (pow((x + 1.0), 3) / (4.0 * pow(HMEM[0], 3)));
     381             :             faxial_Mem[i + TAILS.size() * s] = aux;
     382             :             Fs_Mem[s] += aux;
     383             :             sx_Mem[s] += (aux * sin(2.0 * M_PI * TailPosition[0]));
     384             :             sy_Mem[s] += (aux * sin(2.0 * M_PI * TailPosition[1]));
     385             :             cx_Mem[s] += (aux * cos(2.0 * M_PI * TailPosition[0]));
     386             :             cy_Mem[s] += (aux * cos(2.0 * M_PI * TailPosition[1]));
     387             :           }
     388             :         }
     389             :       }
     390             :     }
     391             :   }
     392             : 
     393         344 :   for (unsigned s = 0; s < NSMEM[0]; s++) {
     394         340 :     if (Fs_Mem[s] != 0.0) {
     395         339 :       ws_Mem[s] = tanh(Fs_Mem[s]);
     396         339 :       W_Mem += ws_Mem[s];
     397         339 :       sx_Mem[s] = sx_Mem[s] / Fs_Mem[s];
     398         339 :       sy_Mem[s] = sy_Mem[s] / Fs_Mem[s];
     399         339 :       cx_Mem[s] = cx_Mem[s] / Fs_Mem[s];
     400         339 :       cy_Mem[s] = cy_Mem[s] / Fs_Mem[s];
     401         339 :       Xsc_Mem += sx_Mem[s] * ws_Mem[s];
     402         339 :       Ysc_Mem += sy_Mem[s] * ws_Mem[s];
     403         339 :       Xcc_Mem += cx_Mem[s] * ws_Mem[s];
     404         339 :       Ycc_Mem += cy_Mem[s] * ws_Mem[s];
     405             :     }
     406             :   }
     407             : 
     408           4 :   Xsc_Mem = Xsc_Mem / W_Mem;
     409           4 :   Ysc_Mem = Ysc_Mem / W_Mem;
     410           4 :   Xcc_Mem = Xcc_Mem / W_Mem;
     411           4 :   Ycc_Mem = Ycc_Mem / W_Mem;
     412             : 
     413             :   // Eq. 12 Hub & Awasthi JCTC 2017.
     414             :   double Xcyl_Mem, Ycyl_Mem;
     415             : 
     416           4 :   if ((XCYL[0] > 0.0) && (YCYL[0] > 0.0)) {
     417             :     Xcyl_Mem = XCYL[0];
     418             :     Ycyl_Mem = YCYL[0];
     419             :   } else {
     420           4 :     Xcyl_Mem = (atan2(-Xsc_Mem, -Xcc_Mem) + M_PI) * Lx / (2 * M_PI);
     421           4 :     Ycyl_Mem = (atan2(-Ysc_Mem, -Ycc_Mem) + M_PI) * Ly / (2 * M_PI);
     422             :   }
     423             : 
     424             :   /*************************
     425             :   *                        *
     426             :   *        Xi_n            *
     427             :   *                        *
     428             :   **************************/
     429             : 
     430             :   // Eq. 1 Hub & Awasthi JCTC 2017. This is the CV that describes de Pore Nucleation.
     431           4 :   double Xi_n = 0.0;
     432             : 
     433             :   // Quantity of beads that could participate in the calculation of the Xi_Chain
     434           4 :   unsigned chainBeads = WATERS.size() + POXYGENS.size();
     435             : 
     436             :   // Quantity of beads that don't participate in the calculation of the Xi_Chain
     437           4 :   unsigned noChainBeads = (UMEM.size() * 2) + TAILS.size();
     438             : 
     439             :   // Z Distances from the oxygens to the geometric center of the membranes.
     440             :   double ZMemDistance;
     441             : 
     442             :   // Scaled positions of the oxygens to respect of the origin of coordinates.
     443             :   Vector Position;
     444             : 
     445             :   // Distance from the water/phosphate group to the defect cylinder.
     446             :   Vector distCylinder;
     447             : 
     448             :   // Center of the cylinder. XY components are calculated (or defined), Z is the Z geometric center of the membranes of the system.
     449           4 :   Vector xyzCyl_Mem = pbcDistance(Vector(0.0, 0.0, 0.0), Vector(Xcyl_Mem, Ycyl_Mem, ZMems));
     450             : 
     451             :   // Average of the radius of the water and lipid cylinder.
     452           4 :   double RCYLAVERAGE = RCYL[0] * (1 + HCH[0]);
     453             : 
     454             :   // Conditions.
     455             :   bool condition1, condition2, condition3;
     456             : 
     457             :   // Z position of the first slice.
     458           4 :   double firstSliceZ = ZMems + (0.0 + 0.5 - NS[0] / 2.0) * DS[0];
     459             : 
     460             :   // Z distance between the first slice and the Z center of the membrane.
     461           4 :   double firstSliceZDist = pbcDistance(Vector(0.0, 0.0, firstSliceZ), Vector(0.0, 0.0, ZMems))[2];
     462             : 
     463             :   // Position in the cylinder.
     464             :   double PositionS;
     465             : 
     466             :   // Mark the particles to analyze.
     467           4 :   std::vector<double> analyzeThisParticle(chainBeads);
     468             : 
     469             :   // Slices to analyze per particle.
     470           4 :   std::vector<unsigned> s1(chainBeads), s2(chainBeads);
     471             : 
     472             :   // Eq. 7 Hub & Awasthi JCTC 2017.
     473           4 :   std::vector<double> faxial(chainBeads * NS[0]);
     474             : 
     475             :   // Eq. 16 Hub & Awasthi JCTC 2017.
     476           4 :   std::vector<double> d_faxial_dz(chainBeads * NS[0]);
     477             : 
     478             :   // Eq. 10 Hub & Awasthi JCTC 2017.
     479           4 :   std::vector<double> Fs(NS[0]);
     480             : 
     481             :   // Eq. 11 Hub & Awasthi JCTC 2017.
     482           4 :   std::vector<double> ws(NS[0]);
     483             : 
     484             :   // Eq. 10 Hub & Awasthi JCTC 2017.
     485             :   double W = 0.0;
     486             : 
     487             :   // Eq. 21 and 22 Hub & Awasthi JCTC 2017.
     488           4 :   std::vector<double> sx(NS[0]), sy(NS[0]), cx(NS[0]), cy(NS[0]);
     489             : 
     490             :   // Eq. 10 Hub & Awasthi JCTC 2017.
     491             :   double Xsc = 0.0, Xcc = 0.0, Ysc = 0.0, Ycc = 0.0;
     492             : 
     493             : #ifdef _OPENMP
     494             : #if _OPENMP >= 201307
     495           4 :   #pragma omp parallel for private(distCylinder, aux, condition1, condition2, condition3, ZMemDistance, PositionS, Position, x) reduction(vec_double_plus:Fs, sx, sy, cx, cy)
     496             : #endif
     497             : #endif
     498             :   for (unsigned i = 0; i < chainBeads; i++) {
     499             :   distCylinder = pbcDistance(xyzCyl_Mem, pbcDistance(Vector(0.0, 0.0, 0.0), getPosition(i + noChainBeads)));
     500             :     aux = sqrt(pow(distCylinder[0], 2) + pow(distCylinder[1], 2));
     501             :     condition1 = ((aux / RCYLAVERAGE) < 1.0);
     502             :     condition2 = ((pbcDistance(Vector(0.0, 0.0, ZuMem), getPosition(i + noChainBeads))[2] > 0) && (aux / RCYLAVERAGE) < 2.0);
     503             :     condition3 = ((pbcDistance(getPosition(i + noChainBeads), Vector(0.0, 0.0, ZlMem))[2] > 0) && (aux / RCYLAVERAGE) < 2.0);
     504             :     if (condition1 || condition2 || condition3) {
     505             :       ZMemDistance = pbcDistance(Vector(0.0, 0.0, ZMems), getPosition(i + noChainBeads))[2];
     506             :       PositionS = (ZMemDistance + firstSliceZDist) / DS[0];
     507             :       // If the following condition is met the particle is in the Z space of the cylinder.
     508             :       if ((PositionS >= (-0.5 - HCH[0])) && (PositionS <= (NS[0] + 0.5 - 1.0 + HCH[0]))) {
     509             :         analyzeThisParticle[i] = 1.0;
     510             : 
     511             :         //Defining the slices to analyze each particle.
     512             :         if (PositionS < 1) {
     513             :           s1[i] = 0;
     514             :           s2[i] = 2;
     515             :         } else if (PositionS <= (NS[0] - 2.0)) {
     516             :           s1[i] = floor(PositionS) - 1;
     517             :           s2[i] = floor(PositionS) + 1;
     518             :         } else {
     519             :           s1[i] = NS[0] - 3;
     520             :           s2[i] = NS[0] - 1;
     521             :         }
     522             : 
     523             :         Position = getPbc().realToScaled(pbcDistance(Vector(0.0, 0.0, 0.0), getPosition(i + noChainBeads)));
     524             : 
     525             :         for (unsigned s = s1[i]; s <= s2[i]; s++) {
     526             :           x = (ZMemDistance - (s + 0.5 - NS[0] / 2.0) * DS[0]) * 2.0 / DS[0];
     527             :           if (!((x <= -1.0 - HCH[0]) || (x >= 1.0 + HCH[0]))) {
     528             :             if (((-1.0 + HCH[0]) <= x) && (x <= (1.0 - HCH[0]))) {
     529             :               faxial[i + chainBeads * s] = 1.0;
     530             :               Fs[s] += 1.0;
     531             :               sx[s] += sin(2.0 * M_PI * Position[0]);
     532             :               sy[s] += sin(2.0 * M_PI * Position[1]);
     533             :               cx[s] += cos(2.0 * M_PI * Position[0]);
     534             :               cy[s] += cos(2.0 * M_PI * Position[1]);
     535             :             } else if (((1.0 - HCH[0]) < x) && (x < (1.0 + HCH[0]))) {
     536             :               aux = 0.5 - ((3.0 * x - 3.0) / (4.0 * HCH[0])) + (pow((x - 1.0), 3) / (4.0 * pow(HCH[0], 3)));
     537             :               faxial[i + chainBeads * s] = aux;
     538             :               d_faxial_dz[i + chainBeads * s] = ((-3.0 / (4.0 * HCH[0])) + ((3.0 * pow((x - 1), 2)) / (4.0 * pow(HCH[0], 3)))) * 2.0 / DS[0];
     539             :               Fs[s] += aux;
     540             :               sx[s] += aux * sin(2.0 * M_PI * Position[0]);
     541             :               sy[s] += aux * sin(2.0 * M_PI * Position[1]);
     542             :               cx[s] += aux * cos(2.0 * M_PI * Position[0]);
     543             :               cy[s] += aux * cos(2.0 * M_PI * Position[1]);
     544             :             } else if (((-1.0 - HCH[0]) < x) && (x < (-1.0 + HCH[0]))) {
     545             :               aux = 0.5 + ((3.0 * x + 3.0) / (4.0 * HCH[0])) - (pow((x + 1.0), 3) / (4.0 * pow(HCH[0], 3)));
     546             :               faxial[i + chainBeads * s] = aux;
     547             :               d_faxial_dz[i + chainBeads * s] = ((3.0 / (4.0 * HCH[0])) - ((3.0 * pow((x + 1), 2)) / (4.0 * pow(HCH[0], 3)))) * 2.0 / DS[0];
     548             :               Fs[s] += aux;
     549             :               sx[s] += (aux * sin(2.0 * M_PI * Position[0]));
     550             :               sy[s] += (aux * sin(2.0 * M_PI * Position[1]));
     551             :               cx[s] += (aux * cos(2.0 * M_PI * Position[0]));
     552             :               cy[s] += (aux * cos(2.0 * M_PI * Position[1]));
     553             :             }
     554             :           }
     555             :         }
     556             :       }
     557             :     }
     558             :   }
     559             : 
     560         184 :   for (unsigned s = 0; s < NS[0]; s++) {
     561         180 :     if (Fs[s] != 0.0) {
     562          49 :       ws[s] = tanh(Fs[s]);
     563          49 :       W += ws[s];
     564          49 :       sx[s] = sx[s] / Fs[s];
     565          49 :       sy[s] = sy[s] / Fs[s];
     566          49 :       cx[s] = cx[s] / Fs[s];
     567          49 :       cy[s] = cy[s] / Fs[s];
     568          49 :       Xsc += sx[s] * ws[s];
     569          49 :       Ysc += sy[s] * ws[s];
     570          49 :       Xcc += cx[s] * ws[s];
     571          49 :       Ycc += cy[s] * ws[s];
     572             :     }
     573             :   }
     574             : 
     575           4 :   Xsc = Xsc / W;
     576           4 :   Ysc = Ysc / W;
     577           4 :   Xcc = Xcc / W;
     578           4 :   Ycc = Ycc / W;
     579             : 
     580             :   // Eq. 12 Hub & Awasthi JCTC 2017.
     581             :   double Xcyl, Ycyl;
     582             : 
     583             :   Xcyl = Xcyl_Mem;
     584             :   Ycyl = Ycyl_Mem;
     585             : 
     586             :   // Eq. 25, 26 and 27 Hub & Awasthi JCTC 2017.
     587             :   double d_sx_dx, d_sx_dz, d_sy_dy, d_sy_dz, d_cx_dx, d_cx_dz, d_cy_dy, d_cy_dz;
     588             : 
     589             :   // Eq. 29 Hub & Awasthi JCTC 2017.
     590             :   double d_ws_dz;
     591             : 
     592             :   // Eq. 31, 32 and 33 Hub & Awasthi JCTC 2017
     593             :   double d_Xsc_dx, d_Xsc_dz, d_Xcc_dx, d_Xcc_dz, d_Ysc_dy, d_Ysc_dz, d_Ycc_dy, d_Ycc_dz;
     594             : 
     595             :   // Center of the cylinder. X and Y are calculated (or defined), Z is the Z component of the geometric center of the membranes.
     596           4 :   Vector xyzCyl = pbcDistance(Vector(0.0, 0.0, 0.0), Vector(Xcyl, Ycyl, ZMems));
     597             : 
     598             :   // Distances from the oxygens to center of the cylinder.
     599           4 :   std::vector<Vector> CylDistances(chainBeads);
     600             : 
     601             :   // Modulo of the XY distances from the oxygens to the center of the cylinder.
     602             :   double ri;
     603             : 
     604             :   // Eq. 8 Hub & Awasthi JCTC 2017.
     605             :   double fradial;
     606             : 
     607             :   // Eq. 15 Hub & Awasthi JCTC 2017.
     608           4 :   std::vector<double> d_fradial_dx(chainBeads), d_fradial_dy(chainBeads);
     609             : 
     610             :   // Eq. 35, 36, 37 and 38 Hub & Awasthi JCTC 2017.
     611           4 :   std::vector<double> d_Xcyl_dx(chainBeads), d_Xcyl_dz(chainBeads), d_Ycyl_dy(chainBeads), d_Ycyl_dz(chainBeads);
     612             : 
     613             :   // To avoid rare instabilities auxX and auxY are truncated at a configurable value (default 500).
     614           4 :   double auxX = (1 / (pow(Xsc, 2) + pow(Xcc, 2))), auxY = (1 / (pow(Ysc, 2) + pow(Ycc, 2)));
     615             : 
     616           4 :   if (auxX > ONEOVERS2C2CUTOFF[0]) {
     617           0 :     auxX = Lx * ONEOVERS2C2CUTOFF[0] / (2 * M_PI);
     618             :   } else {
     619           4 :     auxX = Lx * auxX / (2 * M_PI);
     620             :   }
     621             : 
     622           4 :   if (auxY > ONEOVERS2C2CUTOFF[0]) {
     623           0 :     auxY = Ly * ONEOVERS2C2CUTOFF[0] / (2 * M_PI);
     624             :   } else {
     625           4 :     auxY = Ly * auxY / (2 * M_PI);
     626             :   }
     627             : 
     628             :   //Number of oxygens within the slice s of the membrane-spanning cylinder.
     629           4 :   std::vector<double> Nsp(NS[0]), psi(NS[0]), d_psi(NS[0]);
     630             : 
     631             :   // Eq. 3 Hub & Awasthi JCTC 2017.
     632           4 :   double b = (ZETA[0] / (1.0 - ZETA[0])), c = ((1.0 - ZETA[0]) * exp(b));
     633             : 
     634             :   // Eq. 19 Hub & Awasthi JCTC 2017.
     635           4 :   std::vector<double> fradial_d_faxial_dz(chainBeads * NS[0]);
     636             : 
     637             :   // Eq. 20 Hub & Awasthi JCTC 2017.
     638           4 :   std::vector<double> Axs(NS[0]), Ays(NS[0]);
     639             : 
     640             : #ifdef _OPENMP
     641             : #if _OPENMP >= 201307
     642           4 :   #pragma omp parallel for private(d_Xsc_dx,d_Xcc_dx,d_Ysc_dy,d_Ycc_dy,d_Xsc_dz,d_Xcc_dz,d_Ysc_dz,d_Ycc_dz,d_sx_dx,d_sy_dy,d_cx_dx,d_cy_dy,d_sx_dz,d_sy_dz,d_cx_dz,d_cy_dz,d_ws_dz,ri,x,fradial) reduction(vec_double_plus: Nsp, Axs, Ays)
     643             : #endif
     644             : #endif
     645             :   for (unsigned i = 0; i < chainBeads; i++) {
     646             :   CylDistances[i] = pbcDistance(xyzCyl, pbcDistance(Vector(0.0, 0.0, 0.0), getPosition(i + noChainBeads)));
     647             :     if (analyzeThisParticle[i]) {
     648             :       Position = getPbc().realToScaled(pbcDistance(Vector(0.0, 0.0, 0.0), getPosition(i + noChainBeads)));
     649             :       d_Xsc_dx = 0.0;
     650             :       d_Xcc_dx = 0.0;
     651             :       d_Ysc_dy = 0.0;
     652             :       d_Ycc_dy = 0.0;
     653             :       d_Xsc_dz = 0.0;
     654             :       d_Xcc_dz = 0.0;
     655             :       d_Ysc_dz = 0.0;
     656             :       d_Ycc_dz = 0.0;
     657             :       for (unsigned s = s1[i]; s <= s2[i]; s++) {
     658             :         if (Fs[s] != 0.0) {
     659             :           d_sx_dx = faxial[i + chainBeads * s] * 2.0 * M_PI * cos(2.0 * M_PI * Position[0]) / (Lx * Fs[s]);
     660             :           d_sy_dy = faxial[i + chainBeads * s] * 2.0 * M_PI * cos(2.0 * M_PI * Position[1]) / (Ly * Fs[s]);
     661             :           d_cx_dx = -faxial[i + chainBeads * s] * 2.0 * M_PI * sin(2.0 * M_PI * Position[0]) / (Lx * Fs[s]);
     662             :           d_cy_dy = -faxial[i + chainBeads * s] * 2.0 * M_PI * sin(2.0 * M_PI * Position[1]) / (Ly * Fs[s]);
     663             :           d_Xsc_dx += ws[s] * d_sx_dx / W;
     664             :           d_Xcc_dx += ws[s] * d_cx_dx / W;
     665             :           d_Ysc_dy += ws[s] * d_sy_dy / W;
     666             :           d_Ycc_dy += ws[s] * d_cy_dy / W;
     667             : 
     668             :           d_sx_dz = d_faxial_dz[i + chainBeads * s] * (sin(2.0 * M_PI * Position[0]) - sx[s]) / Fs[s];
     669             :           d_sy_dz = d_faxial_dz[i + chainBeads * s] * (sin(2.0 * M_PI * Position[1]) - sy[s]) / Fs[s];
     670             :           d_cx_dz = d_faxial_dz[i + chainBeads * s] * (cos(2.0 * M_PI * Position[0]) - cx[s]) / Fs[s];
     671             :           d_cy_dz = d_faxial_dz[i + chainBeads * s] * (cos(2.0 * M_PI * Position[1]) - cy[s]) / Fs[s];
     672             :           d_ws_dz = (1 - pow(ws[s], 2)) * d_faxial_dz[i + chainBeads * s];
     673             :           d_Xsc_dz += (ws[s] * d_sx_dz + d_ws_dz * (sx[s] - Xsc)) / W;
     674             :           d_Xcc_dz += (ws[s] * d_cx_dz + d_ws_dz * (cx[s] - Xcc)) / W;
     675             :           d_Ysc_dz += (ws[s] * d_sy_dz + d_ws_dz * (sy[s] - Ysc)) / W;
     676             :           d_Ycc_dz += (ws[s] * d_cy_dz + d_ws_dz * (cy[s] - Ycc)) / W;
     677             :         }
     678             :       }
     679             :       d_Xcyl_dx[i] = auxX * (-Xsc * d_Xcc_dx + Xcc * d_Xsc_dx);
     680             :       d_Xcyl_dz[i] = auxX * (-Xsc * d_Xcc_dz + Xcc * d_Xsc_dz);
     681             :       d_Ycyl_dy[i] = auxY * (-Ysc * d_Ycc_dy + Ycc * d_Ysc_dy);
     682             :       d_Ycyl_dz[i] = auxY * (-Ysc * d_Ycc_dz + Ycc * d_Ysc_dz);
     683             : 
     684             :       ri = sqrt(pow(CylDistances[i][0], 2) + pow(CylDistances[i][1], 2));
     685             :       x = ri / RCYL[0];
     686             :       if (!((x <= -1.0 - HCH[0]) || (x >= 1.0 + HCH[0]))) {
     687             :         if (((-1.0 + HCH[0]) <= x) && (x <= (1.0 - HCH[0]))) {
     688             :           fradial = 1.0;
     689             :         } else if (((1.0 - HCH[0]) < x) && (x < (1.0 + HCH[0]))) {
     690             :           fradial = 0.5 - ((3.0 * x - 3.0) / (4.0 * HCH[0])) + (pow((x - 1.0), 3) / (4.0 * pow(HCH[0], 3)));
     691             :           d_fradial_dx[i] = ((-3.0 / (4.0 * HCH[0])) + ((3.0 * pow((x - 1), 2)) / (4.0 * pow(HCH[0], 3)))) * CylDistances[i][0] / (RCYL[0] * ri);
     692             :           d_fradial_dy[i] = ((-3.0 / (4.0 * HCH[0])) + ((3.0 * pow((x - 1), 2)) / (4.0 * pow(HCH[0], 3)))) * CylDistances[i][1] / (RCYL[0] * ri);
     693             :         } else if (((-1.0 - HCH[0]) < x) && (x < (-1.0 + HCH[0]))) {
     694             :           fradial = 0.5 + ((3.0 * x + 3.0) / (4.0 * HCH[0])) - (pow((x + 1.0), 3) / (4.0 * pow(HCH[0], 3)));
     695             :           d_fradial_dx[i] = ((3.0 / (4.0 * HCH[0])) - ((3.0 * pow((x + 1), 2)) / (4.0 * pow(HCH[0], 3)))) * CylDistances[i][0] / (RCYL[0] * ri);
     696             :           d_fradial_dy[i] = ((3.0 / (4.0 * HCH[0])) - ((3.0 * pow((x + 1), 2)) / (4.0 * pow(HCH[0], 3)))) * CylDistances[i][1] / (RCYL[0] * ri);
     697             :         }
     698             : 
     699             :         for (unsigned s = s1[i]; s <= s2[i]; s++) {
     700             :           Nsp[s] += fradial * faxial[i + chainBeads * s];
     701             :           Axs[s] += faxial[i + chainBeads * s] * d_fradial_dx[i];
     702             :           Ays[s] += faxial[i + chainBeads * s] * d_fradial_dy[i];
     703             :           fradial_d_faxial_dz[i + chainBeads * s] = fradial * d_faxial_dz[i + chainBeads * s];
     704             :         }
     705             :       }
     706             :     }
     707             :   }
     708             : 
     709         184 :   for (unsigned s = 0; s < NS[0]; s++) {
     710         180 :     if (Nsp[s] <= 1.0) {
     711         149 :       psi[s] = ZETA[0] * Nsp[s];
     712         149 :       d_psi[s] = ZETA[0];
     713         149 :       Xi_n += psi[s];
     714             :     } else {
     715          31 :       psi[s] = 1.0 - c * exp(-b * Nsp[s]);
     716          31 :       d_psi[s] = b * c * exp(-b * Nsp[s]);
     717          31 :       Xi_n += psi[s];
     718             :     }
     719             :   }
     720             : 
     721           4 :   Xi_n = Xi_n / NS[0];
     722             : 
     723             :   // Eq. 18 Hub & Awasthi JCTC 2017.
     724           4 :   std::vector<double> faxial_d_fradial_dx(chainBeads * NS[0]), faxial_d_fradial_dy(chainBeads * NS[0]), faxial_d_fradial_dz(chainBeads * NS[0]);
     725             : 
     726             :   // Eq. 13 Hub & Awasthi JCTC 2017 modified to considere the Heaviside_Chain step function (this only affect during the transition).
     727           4 :   std::vector<Vector> derivatives_Chain(chainBeads);
     728             : 
     729             : #ifdef _OPENMP
     730             : #if _OPENMP >= 201307
     731           4 :   #pragma omp parallel for private(aux)
     732             : #endif
     733             : #endif
     734             :   for (unsigned i = 0; i < chainBeads; i++) {
     735             :   if (analyzeThisParticle[i]) {
     736             :       for (unsigned s = s1[i]; s <= s2[i]; s++) {
     737             :         if (faxial[i + chainBeads * s]) {
     738             :           faxial_d_fradial_dx[i + chainBeads * s] = faxial[i + chainBeads * s] * d_fradial_dx[i] - d_Xcyl_dx[i] * Axs[s];
     739             :           faxial_d_fradial_dy[i + chainBeads * s] = faxial[i + chainBeads * s] * d_fradial_dy[i] - d_Ycyl_dy[i] * Ays[s];
     740             :           faxial_d_fradial_dz[i + chainBeads * s] = -d_Xcyl_dz[i] * Axs[s] - d_Ycyl_dz[i] * Ays[s];
     741             :         }
     742             :       }
     743             : 
     744             :       for (unsigned s = s1[i]; s <= s2[i]; s++) {
     745             :         aux = d_psi[s] / NS[0];
     746             :         derivatives_Chain[i][0] += aux * faxial_d_fradial_dx[i + chainBeads * s];
     747             :         derivatives_Chain[i][1] += aux * faxial_d_fradial_dy[i + chainBeads * s];
     748             :         derivatives_Chain[i][2] += aux * (faxial_d_fradial_dz[i + chainBeads * s] + fradial_d_faxial_dz[i + chainBeads * s]);
     749             :       }
     750             :     }
     751             :   }
     752             : 
     753             :   Tensor virial;
     754      134604 :   for (unsigned i = 0; i < chainBeads; i++) {
     755      134600 :   setAtomsDerivatives((i + noChainBeads), derivatives_Chain[i]);
     756      269200 :     virial -= Tensor(CylDistances[i], derivatives_Chain[i]);
     757             :   }
     758             : 
     759           4 :   setValue(Xi_n);
     760           4 :   setBoxDerivatives(virial);
     761           4 : }
     762             : }
     763             : }

Generated by: LCOV version 1.16