LCOV - code coverage report
Current view: top level - membranefusion - MemFusionP.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 134 151 88.7 %
Date: 2025-12-04 11:19:34 Functions: 3 4 75.0 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             : Copyright (c) 2022.
       3             : 
       4             : CVs originally developed by the Jochen Hub group from the University of Saarland (Germany)
       5             : and adapted and implemented in PLUMED by Ary Lautaro Di Bartolo and Diego Masone from the
       6             : National University of Cuyo (Argentina).
       7             : 
       8             : The membranefusion module is free software: you can redistribute it and/or modify
       9             : it under the terms of the GNU Lesser General Public License as published by
      10             : the Free Software Foundation, either version 3 of the License, or
      11             : (at your option) any later version.
      12             : 
      13             : The membranefusion module is distributed in the hope that it will be useful,
      14             : but WITHOUT ANY WARRANTY; without even the implied warranty of
      15             : MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      16             : GNU Lesser General Public License for more details.
      17             : 
      18             : You should have received a copy of the GNU Lesser General Public License
      19             : along with plumed.  If not, see <http://www.gnu.org/licenses/>.
      20             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      21             : #include "colvar/Colvar.h"
      22             : #include "core/ActionRegister.h"
      23             : #include <cmath>
      24             : #ifdef __PLUMED_HAS_OPENACC
      25             : //there are some issues with nvc++ and the declaration of omp here
      26             : #undef _OPENMP
      27             : #endif
      28             : #ifdef _OPENMP
      29             : #if _OPENMP >= 201307
      30             : #include <omp.h>
      31             : #endif
      32             : #endif
      33             : 
      34             : namespace PLMD {
      35             : namespace membranefusion {
      36             : //+PLUMEDOC COLVAR MEMFUSIONP
      37             : /*
      38             : Calculate a CV that can induce the formation of the hemifusion stalk between two initially flat and planar bilayers.
      39             : 
      40             : Calculate the collective variable designed by Hub and collaborators (see first paper cited below) and
      41             : implemented into PLUMED by Masone and collaborators (see second paper cited below).
      42             : This CV is capable of inducing the formation of the hemifusion stalk between two initially flat and planar bilayers
      43             : surrounded by water molecules.
      44             : 
      45             : $$
      46             : \xi_f = \frac{1}{N_{sf}} \sum_{s=0}^{N_{sf}-1} \delta_{sf} (N_{sf}^{(p)})
      47             : $$
      48             : 
      49             : Where $\xi_f$ is the CV, $N_{sf}$ is the number of slices of the cylinder that make up the CV,
      50             : $\delta_{sf}$ is a continuos function in the interval [0 1] ($\delta_{sf} = 0$ for no beads in the slice s, and
      51             : $\delta_{sf} = 1$ for 1 or more beads in the slice s) and $N_{sf}^{(p)}$ accounts for the number of tail beads
      52             : within the slice s.
      53             : 
      54             : ## Examples
      55             : 
      56             : This example induces a hemifusion stalk ($\xi_f = 0.85$) from a pair of initially flat membranes ($\xi_f = 0.2$).
      57             : 
      58             : ```plumed
      59             : lMem: GROUP ATOMS=1-12288 #All the lower membrane beads.
      60             : uMem: GROUP ATOMS=12289-24576 #All the upper membrane beads.
      61             : tails: GROUP ATOMS=8-24572:12,12-24576:12 #All the lipid tails beads (from the lower and upper membrane).
      62             : 
      63             : memFusion: MEMFUSIONP UMEMBRANE=uMem LMEMBRANE=lMem TAILS=tails NSMEM=70 DSMEM=0.1 HMEM=0.25 RCYLMEM=1.75 ZETAMEM=0.5
      64             : 
      65             : MOVINGRESTRAINT ...
      66             :     ARG=memFusion
      67             :     STEP0=0 AT0=0.2 KAPPA0=10000.0
      68             :     STEP1=500000 AT1=0.85 KAPPA1=10000.0
      69             : ...
      70             : 
      71             : PRINT ARG=memFusion FILE=COLVAR STRIDE=1
      72             : ```
      73             : 
      74             : You can test this CV with another example in this <a href="https://github.com/lautarodibartolo/MemFusion/tree/main/ExampleParallel">GitHub folder</a>.
      75             : 
      76             : */
      77             : //+ENDPLUMEDOC
      78             : 
      79             : class memFusionP : public Colvar {
      80             :   std::vector<AtomNumber> UMEM, LMEM, TAILS;
      81             :   std::vector<double> NSMEM, DSMEM, HMEM, RCYLMEM, ZETAMEM, ONEOVERS2C2CUTOFF, XCYL, YCYL;
      82             : 
      83             : public:
      84             :   explicit memFusionP(const ActionOptions &);
      85             :   void calculate() override;
      86             :   static void registerKeywords(Keywords &keys);
      87             : };
      88             : 
      89             : PLUMED_REGISTER_ACTION(memFusionP, "MEMFUSIONP")
      90             : 
      91           3 : void memFusionP::registerKeywords(Keywords &keys) {
      92           3 :   Colvar::registerKeywords(keys);
      93           3 :   keys.add("atoms", "UMEMBRANE", "all the beads of the upper membrane");
      94           3 :   keys.add("atoms", "LMEMBRANE", "all the beads of the lower membrane");
      95           3 :   keys.add("atoms", "TAILS", "all the tail beads of the system");
      96           3 :   keys.add("compulsory", "NSMEM", "the number of slices of the membrane fusion cylinder in such a way that when the bilayers are flat and parallel the CV is equal to 0.2.");
      97           3 :   keys.add("optional", "DSMEM", "( default=0.1) thickness of the slices of the membrane fusion cylinder.");
      98           3 :   keys.add("optional", "HMEM", "( default=0.25 ) parameter of the step function θ(x,h) for the membrane fusion.");
      99           3 :   keys.add("optional", "RCYLMEM", "( default=1.75 ) the radius of the membrane fusion cylinder.");
     100           3 :   keys.add("optional", "ZETAMEM", "( default=0.5 ) occupation factor.");
     101           3 :   keys.add("optional", "ONEOVERS2C2CUTOFF", "( default=500 ) cut off large values for the derivative of the atan2 function.");
     102           3 :   keys.add("optional", "XCYL", "X coordinate of the fixed cylinder, if not present this will be calculated.");
     103           3 :   keys.add("optional", "YCYL", "Y coordinate of the fixed cylinder, if not present this will be calculated.");
     104           6 :   keys.setValueDescription("scalar","the value of the CV");
     105           3 :   keys.addDOI("10.1021/acs.jctc.7b00106");
     106           3 :   keys.addDOI("10.1039/D1SC06711G");
     107           3 : }
     108             : 
     109           1 : memFusionP::memFusionP(const ActionOptions &ao) : PLUMED_COLVAR_INIT(ao) {
     110           2 :   parseAtomList("UMEMBRANE", UMEM);
     111           1 :   if (UMEM.size() == 0) {
     112           0 :     error("UMEMBRANE has not any atom specified.");
     113             :   }
     114             : 
     115           2 :   parseAtomList("LMEMBRANE", LMEM);
     116           1 :   if (LMEM.size() == 0) {
     117           0 :     error("LMEMBRANE has not any atom specified.");
     118             :   }
     119             : 
     120           2 :   parseAtomList("TAILS", TAILS);
     121           1 :   if (TAILS.size() == 0) {
     122           0 :     error("TAILS has not any atom specified.");
     123             :   }
     124             : 
     125           2 :   parseVector("NSMEM", NSMEM);
     126           1 :   if (NSMEM.size() > 1) {
     127           0 :     error("NSMEM cannot take more than one value.");
     128             :   }
     129             : 
     130           2 :   parseVector("DSMEM", DSMEM);
     131           1 :   if (DSMEM.size() > 1) {
     132           0 :     error("DSMEM cannot take more than one value.");
     133             :   }
     134           1 :   if (DSMEM.size() == 0) {
     135           0 :     DSMEM.push_back(0.1);
     136             :   }
     137             : 
     138           2 :   parseVector("HMEM", HMEM);
     139           1 :   if (HMEM.size() > 1) {
     140           0 :     error("HMEM cannot take more than one value.");
     141             :   }
     142           1 :   if (HMEM.size() == 0) {
     143           0 :     HMEM.push_back(0.25);
     144             :   }
     145             : 
     146           2 :   parseVector("RCYLMEM", RCYLMEM);
     147           1 :   if (RCYLMEM.size() > 1) {
     148           0 :     error("RCYLMEM cannot take more than one value.");
     149             :   }
     150           1 :   if (RCYLMEM.size() == 0) {
     151           0 :     RCYLMEM.push_back(1.75);
     152             :   }
     153             : 
     154           2 :   parseVector("ZETAMEM", ZETAMEM);
     155           1 :   if (ZETAMEM.size() > 1) {
     156           0 :     error("ZETA cannot take more than one value.");
     157             :   }
     158           1 :   if (ZETAMEM.size() == 0) {
     159           0 :     ZETAMEM.push_back(0.5);
     160             :   }
     161             : 
     162           2 :   parseVector("ONEOVERS2C2CUTOFF", ONEOVERS2C2CUTOFF);
     163           1 :   if (ONEOVERS2C2CUTOFF.size() > 1) {
     164           0 :     error("ONEOVERS2C2CUTOFF cannot take more than one value.");
     165             :   }
     166           1 :   if (ONEOVERS2C2CUTOFF.size() == 0) {
     167           1 :     ONEOVERS2C2CUTOFF.push_back(500);
     168             :   }
     169             : 
     170           2 :   parseVector("XCYL", XCYL);
     171           1 :   if (XCYL.size() > 1) {
     172           0 :     error("XCYL cannot take more than one value.");
     173             :   }
     174           1 :   if (XCYL.size() == 0) {
     175           1 :     XCYL.push_back(-1.0);
     176             :   }
     177             : 
     178           2 :   parseVector("YCYL", YCYL);
     179           1 :   if (YCYL.size() > 1) {
     180           0 :     error("YCYL cannot take more than one value.");
     181             :   }
     182           1 :   if (YCYL.size() == 0) {
     183           1 :     YCYL.push_back(-1.0);
     184             :   }
     185             : 
     186           1 :   checkRead();
     187             : 
     188             :   std::vector<AtomNumber> atoms;
     189       12289 :   for (unsigned i = 0; i < UMEM.size(); i++) {
     190       12288 :     atoms.push_back(UMEM[i]);
     191             :   }
     192       12289 :   for (unsigned i = 0; i < LMEM.size(); i++) {
     193       12288 :     atoms.push_back(LMEM[i]);
     194             :   }
     195        4097 :   for (unsigned i = 0; i < TAILS.size(); i++) {
     196        4096 :     atoms.push_back(TAILS[i]);
     197             :   }
     198             : 
     199           1 :   addValueWithDerivatives();
     200           1 :   setNotPeriodic();
     201           1 :   requestAtoms(atoms);
     202           1 : }
     203             : 
     204           3 : void memFusionP::calculate() {
     205             :   /**************************
     206             :    *                        *
     207             :    *         System         *
     208             :    *                        *
     209             :    **************************/
     210             : 
     211             :   // Box dimensions.
     212           3 :   double Lx = getBox()[0][0], Ly = getBox()[1][1], Lz = getBox()[2][2];
     213             : 
     214             :   // Z center of the upper membrane (uMem) and lower membrane (lMem) for systems with PBC: https://en.wikipedia.org/wiki/Center_of_mass#Systems_with_periodic_boundary_conditions .
     215             :   double ZuMem, ZuMemcos = 0.0, ZuMemsin = 0.0, uMemAngle, ZlMem, ZlMemcos = 0.0, ZlMemsin = 0.0, lMemAngle;
     216             : 
     217             : #ifdef _OPENMP
     218             : #if _OPENMP >= 201307
     219           3 :   #pragma omp parallel for private(uMemAngle, lMemAngle) reduction(+:ZuMemcos, ZuMemsin, ZlMemcos, ZlMemsin)
     220             : #endif
     221             : #endif
     222             :   for (unsigned i = 0; i < UMEM.size(); i++) {
     223             :     uMemAngle = 2.0 * M_PI * getPbc().realToScaled(pbcDistance(Vector(0.0, 0.0, 0.0), getPosition(i)))[2];
     224             :     lMemAngle = 2.0 * M_PI * getPbc().realToScaled(pbcDistance(Vector(0.0, 0.0, 0.0), getPosition(i + UMEM.size())))[2];
     225             :     ZuMemcos += cos(uMemAngle);
     226             :     ZuMemsin += sin(uMemAngle);
     227             :     ZlMemcos += cos(lMemAngle);
     228             :     ZlMemsin += sin(lMemAngle);
     229             :   }
     230             : 
     231           3 :   ZuMemcos = ZuMemcos / UMEM.size();
     232           3 :   ZuMemsin = ZuMemsin / UMEM.size();
     233           3 :   ZlMemcos = ZlMemcos / UMEM.size();
     234           3 :   ZlMemsin = ZlMemsin / UMEM.size();
     235             : 
     236           3 :   ZuMem = Lz * (atan2(-ZuMemsin, -ZuMemcos) + M_PI) / (2.0 * M_PI);
     237           3 :   ZlMem = Lz * (atan2(-ZlMemsin, -ZlMemcos) + M_PI) / (2.0 * M_PI);
     238             : 
     239             :   // Z center of the boths membranes (upper and lower).
     240           3 :   double ZMems = (ZuMem + ZlMem) / 2.0;
     241             : 
     242             :   /*************************
     243             :    *                        *
     244             :    *         Xi_Mem         *
     245             :    *                        *
     246             :    **************************/
     247             : 
     248             :   // Quantity of beads of the membranes.
     249           3 :   unsigned membraneBeads = UMEM.size() + LMEM.size();
     250             : 
     251             :   // Z distance from the lipid tail to the geometric center of both membranes.
     252             :   double ZTailDistance;
     253             : 
     254             :   // Z position of the first slice.
     255           3 :   double firstSliceZ_Mem = ZMems + (0.0 + 0.5 - NSMEM[0] / 2.0) * DSMEM[0];
     256             : 
     257             :   // Z distance between the first slice and the Z center of the membrane.
     258           3 :   double firstSliceZDist_Mem = pbcDistance(Vector(0.0, 0.0, firstSliceZ_Mem), Vector(0.0, 0.0, ZMems))[2];
     259             : 
     260             :   // Position in the cylinder.
     261             :   double PositionS_Mem;
     262             : 
     263             :   // Slices to analyze per particle.
     264           3 :   std::vector<unsigned> s1_Mem(TAILS.size()), s2_Mem(TAILS.size());
     265             : 
     266             :   // Mark the particles to analyze.
     267           3 :   std::vector<double> analyzeThisParticle_Mem(TAILS.size());
     268             : 
     269             :   // Eq. 7 Hub & Awasthi JCTC 2017.
     270           3 :   std::vector<double> faxial_Mem(TAILS.size() * NSMEM[0]);
     271             : 
     272             :   // Eq. 16 Hub & Awasthi JCTC 2017.
     273           3 :   std::vector<double> d_faxial_Mem_dz(TAILS.size() * NSMEM[0]);
     274             : 
     275             :   // Eq. 10 Hub & Awasthi JCTC 2017.
     276           3 :   std::vector<double> Fs_Mem(NSMEM[0]);
     277             : 
     278             :   // Eq. 11 Hub & Awasthi JCTC 2017.
     279           3 :   std::vector<double> ws_Mem(NSMEM[0]);
     280             : 
     281             :   // Eq. 10 Hub & Awasthi JCTC 2017.
     282             :   double W_Mem = 0.0;
     283             : 
     284             :   // Eq. 21 and 22 Hub & Awasthi JCTC 2017.
     285           3 :   std::vector<double> sx_Mem(NSMEM[0]), sy_Mem(NSMEM[0]), cx_Mem(NSMEM[0]), cy_Mem(NSMEM[0]);
     286             : 
     287             :   // Eq. 10 Hub & Awasthi JCTC 2017.
     288             :   double Xsc_Mem = 0.0, Xcc_Mem = 0.0, Ysc_Mem = 0.0, Ycc_Mem = 0.0;
     289             : 
     290             :   // Aux.
     291             :   double x, aux;
     292             : 
     293             :   // Scaled position of the lipid tail respect the origin of coordinates.
     294             :   Vector TailPosition;
     295             : 
     296             :   // Thanks stack overflow.
     297             : #ifdef _OPENMP
     298             : #if _OPENMP >= 201307
     299             :   #pragma omp declare reduction(vec_double_plus : std::vector<double> : \
     300             :   std::transform(omp_out.begin(), omp_out.end(), omp_in.begin(), omp_out.begin(), std::plus<double>())) \
     301             :   initializer(omp_priv = decltype(omp_orig)(omp_orig.size()))
     302             : #endif
     303             : #endif
     304             : 
     305             : #ifdef _OPENMP
     306             : #if _OPENMP >= 201307
     307           3 :   #pragma omp parallel for private(ZTailDistance, PositionS_Mem, TailPosition, x, aux) reduction(vec_double_plus:Fs_Mem, sx_Mem, sy_Mem, cx_Mem, cy_Mem)
     308             : #endif
     309             : #endif
     310             :   for (unsigned i = 0; i < TAILS.size(); i++) {
     311             :     ZTailDistance = pbcDistance(Vector(0.0, 0.0, ZMems), getPosition(i + membraneBeads))[2];
     312             :     PositionS_Mem = (ZTailDistance + firstSliceZDist_Mem) / DSMEM[0];
     313             :     // If the following condition is met the particle is in the Z space of the cylinder.
     314             :     if ((PositionS_Mem >= (-0.5 - HMEM[0])) && (PositionS_Mem <= (NSMEM[0] + 0.5 - 1.0 + HMEM[0]))) {
     315             :       analyzeThisParticle_Mem[i] = 1.0;
     316             :       // Defining the slices to analyze each particle.
     317             :       if (PositionS_Mem < 1) {
     318             :         s1_Mem[i] = 0;
     319             :         s2_Mem[i] = 2;
     320             :       } else if (PositionS_Mem <= (NSMEM[0] - 2.0)) {
     321             :         s1_Mem[i] = floor(PositionS_Mem) - 1;
     322             :         s2_Mem[i] = floor(PositionS_Mem) + 1;
     323             :       } else {
     324             :         s1_Mem[i] = NSMEM[0] - 3;
     325             :         s2_Mem[i] = NSMEM[0] - 1;
     326             :       }
     327             : 
     328             :       TailPosition = getPbc().realToScaled(pbcDistance(Vector(0.0, 0.0, 0.0), getPosition(i + membraneBeads)));
     329             : 
     330             :       for (unsigned s = s1_Mem[i]; s <= s2_Mem[i]; s++) {
     331             :         x = (ZTailDistance - (s + 0.5 - NSMEM[0] / 2.0) * DSMEM[0]) * 2.0 / DSMEM[0];
     332             :         if (!((x <= -1.0 - HMEM[0]) || (x >= 1.0 + HMEM[0]))) {
     333             :           if (((-1.0 + HMEM[0]) <= x) && (x <= (1.0 - HMEM[0]))) {
     334             :             faxial_Mem[i + TAILS.size() * s] = 1.0;
     335             :             Fs_Mem[s] += 1.0;
     336             :             sx_Mem[s] += sin(2.0 * M_PI * TailPosition[0]);
     337             :             sy_Mem[s] += sin(2.0 * M_PI * TailPosition[1]);
     338             :             cx_Mem[s] += cos(2.0 * M_PI * TailPosition[0]);
     339             :             cy_Mem[s] += cos(2.0 * M_PI * TailPosition[1]);
     340             :           } else if (((1.0 - HMEM[0]) < x) && (x < (1.0 + HMEM[0]))) {
     341             :             aux = 0.5 - ((3.0 * x - 3.0) / (4.0 * HMEM[0])) + (pow((x - 1.0), 3) / (4.0 * pow(HMEM[0], 3)));
     342             :             faxial_Mem[i + TAILS.size() * s] = aux;
     343             :             d_faxial_Mem_dz[i + TAILS.size() * s] = ((-3.0 / (4.0 * HMEM[0])) + ((3.0 * pow((x - 1), 2)) / (4.0 * pow(HMEM[0], 3)))) * 2.0 / DSMEM[0];
     344             :             Fs_Mem[s] += aux;
     345             :             sx_Mem[s] += aux * sin(2.0 * M_PI * TailPosition[0]);
     346             :             sy_Mem[s] += aux * sin(2.0 * M_PI * TailPosition[1]);
     347             :             cx_Mem[s] += aux * cos(2.0 * M_PI * TailPosition[0]);
     348             :             cy_Mem[s] += aux * cos(2.0 * M_PI * TailPosition[1]);
     349             :           } else if (((-1.0 - HMEM[0]) < x) && (x < (-1.0 + HMEM[0]))) {
     350             :             aux = 0.5 + ((3.0 * x + 3.0) / (4.0 * HMEM[0])) - (pow((x + 1.0), 3) / (4.0 * pow(HMEM[0], 3)));
     351             :             faxial_Mem[i + TAILS.size() * s] = aux;
     352             :             d_faxial_Mem_dz[i + TAILS.size() * s] = ((3.0 / (4.0 * HMEM[0])) - ((3.0 * pow((x + 1), 2)) / (4.0 * pow(HMEM[0], 3)))) * 2.0 / DSMEM[0];
     353             :             Fs_Mem[s] += aux;
     354             :             sx_Mem[s] += (aux * sin(2.0 * M_PI * TailPosition[0]));
     355             :             sy_Mem[s] += (aux * sin(2.0 * M_PI * TailPosition[1]));
     356             :             cx_Mem[s] += (aux * cos(2.0 * M_PI * TailPosition[0]));
     357             :             cy_Mem[s] += (aux * cos(2.0 * M_PI * TailPosition[1]));
     358             :           }
     359             :         }
     360             :       }
     361             :     }
     362             :   }
     363             : 
     364         213 :   for (unsigned s = 0; s < NSMEM[0]; s++) {
     365         210 :     if (Fs_Mem[s] != 0.0) {
     366         106 :       ws_Mem[s] = tanh(Fs_Mem[s]);
     367         106 :       W_Mem += ws_Mem[s];
     368         106 :       sx_Mem[s] = sx_Mem[s] / Fs_Mem[s];
     369         106 :       sy_Mem[s] = sy_Mem[s] / Fs_Mem[s];
     370         106 :       cx_Mem[s] = cx_Mem[s] / Fs_Mem[s];
     371         106 :       cy_Mem[s] = cy_Mem[s] / Fs_Mem[s];
     372         106 :       Xsc_Mem += sx_Mem[s] * ws_Mem[s];
     373         106 :       Ysc_Mem += sy_Mem[s] * ws_Mem[s];
     374         106 :       Xcc_Mem += cx_Mem[s] * ws_Mem[s];
     375         106 :       Ycc_Mem += cy_Mem[s] * ws_Mem[s];
     376             :     }
     377             :   }
     378             : 
     379           3 :   Xsc_Mem = Xsc_Mem / W_Mem;
     380           3 :   Ysc_Mem = Ysc_Mem / W_Mem;
     381           3 :   Xcc_Mem = Xcc_Mem / W_Mem;
     382           3 :   Ycc_Mem = Ycc_Mem / W_Mem;
     383             : 
     384             :   // Eq. 12 Hub & Awasthi JCTC 2017.
     385             :   double Xcyl_Mem, Ycyl_Mem;
     386             : 
     387           3 :   if ((XCYL[0] > 0.0) && (YCYL[0] > 0.0)) {
     388             :     Xcyl_Mem = XCYL[0];
     389             :     Ycyl_Mem = YCYL[0];
     390             :   } else {
     391           3 :     Xcyl_Mem = (atan2(-Xsc_Mem, -Xcc_Mem) + M_PI) * Lx / (2 * M_PI);
     392           3 :     Ycyl_Mem = (atan2(-Ysc_Mem, -Ycc_Mem) + M_PI) * Ly / (2 * M_PI);
     393             :   }
     394             : 
     395             :   // Eq. 25, 26 and 27 Hub & Awasthi JCTC 2017.
     396             :   double d_sx_Mem_dx, d_sx_Mem_dz, d_sy_Mem_dy, d_sy_Mem_dz, d_cx_Mem_dx, d_cx_Mem_dz, d_cy_Mem_dy, d_cy_Mem_dz;
     397             : 
     398             :   // Eq. 29 Hub & Awasthi JCTC 2017.
     399             :   double d_ws_Mem_dz;
     400             : 
     401             :   // Eq. 31, 32 and 33 Hub & Awasthi JCTC 2017
     402             :   double d_Xsc_Mem_dx, d_Xsc_Mem_dz, d_Xcc_Mem_dx, d_Xcc_Mem_dz, d_Ysc_Mem_dy, d_Ysc_Mem_dz, d_Ycc_Mem_dy, d_Ycc_Mem_dz;
     403             : 
     404             :   // Center of the cylinder. XY components are calculated (or defined), Z is the Z geometric center of the membranes of the system.
     405           3 :   Vector xyzCyl_Mem = pbcDistance(Vector(0.0, 0.0, 0.0), Vector(Xcyl_Mem, Ycyl_Mem, ZMems));
     406             : 
     407             :   // Distances from the lipid tails to center of the cylinder.
     408           3 :   std::vector<Vector> CylDistances_Mem(TAILS.size());
     409             : 
     410             :   // XY distance from the lipid tails to the center of the cylinder.
     411             :   double ri_Mem;
     412             : 
     413             :   // Eq. 8 Hub & Awasthi JCTC 2017.
     414             :   double fradial_Mem = 0;
     415             : 
     416             :   // Eq. 15 Hub & Awasthi JCTC 2017.
     417           3 :   std::vector<double> d_fradial_Mem_dx(TAILS.size()), d_fradial_Mem_dy(TAILS.size());
     418             : 
     419             :   // Eq. 35, 36, 37 and 38 Hub & Awasthi JCTC 2017.
     420           3 :   std::vector<double> d_Xcyl_Mem_dx(TAILS.size()), d_Xcyl_Mem_dz(TAILS.size()), d_Ycyl_Mem_dy(TAILS.size()), d_Ycyl_Mem_dz(TAILS.size());
     421             : 
     422             :   // To avoid rare instabilities auxX_Mem and auxY_Mem are truncated at a configurable value (default = 500).
     423           3 :   double auxX_Mem = (1 / (pow(Xsc_Mem, 2) + pow(Xcc_Mem, 2))), auxY_Mem = (1 / (pow(Ysc_Mem, 2) + pow(Ycc_Mem, 2)));
     424             : 
     425           3 :   if (auxX_Mem > ONEOVERS2C2CUTOFF[0]) {
     426           0 :     auxX_Mem = Lx * ONEOVERS2C2CUTOFF[0] / (2 * M_PI);
     427             :   } else {
     428           3 :     auxX_Mem = Lx * auxX_Mem / (2 * M_PI);
     429             :   }
     430             : 
     431           3 :   if (auxY_Mem > ONEOVERS2C2CUTOFF[0]) {
     432           0 :     auxY_Mem = Ly * ONEOVERS2C2CUTOFF[0] / (2 * M_PI);
     433             :   } else {
     434           3 :     auxY_Mem = Ly * auxY_Mem / (2 * M_PI);
     435             :   }
     436             : 
     437             :   // Number of lipid tails within the slice s of the membranes cylinder.
     438           3 :   std::vector<double> Nsp_Mem(NSMEM[0]), psi_Mem(NSMEM[0]), d_psi_Mem(NSMEM[0]);
     439             : 
     440             :   // Eq. 3 Hub & Awasthi JCTC 2017.
     441           3 :   double b_Mem = (ZETAMEM[0] / (1.0 - ZETAMEM[0])), c_Mem = ((1.0 - ZETAMEM[0]) * exp(b_Mem));
     442             : 
     443             :   // Eq. 19 Hub & Awasthi JCTC 2017.
     444           3 :   std::vector<double> fradial_Mem_d_faxial_Mem_dz(TAILS.size() * NSMEM[0]);
     445             : 
     446             :   // Eq. 20 Hub & Awasthi JCTC 2017.
     447           3 :   std::vector<double> Axs_Mem(NSMEM[0]), Ays_Mem(NSMEM[0]);
     448             : 
     449             :   // Eq. 1 Hub & Awasthi JCTC 2017. This is the CV that describes de Pore Nucleation.
     450           3 :   double Xi_Mem = 0.0;
     451             : 
     452             : #ifdef _OPENMP
     453             : #if _OPENMP >= 201307
     454           3 :   #pragma omp parallel for private(TailPosition,d_Xsc_Mem_dx,d_Xcc_Mem_dx,d_Ysc_Mem_dy,d_Ycc_Mem_dy,d_Xsc_Mem_dz,d_Xcc_Mem_dz,d_Ysc_Mem_dz,d_Ycc_Mem_dz,d_sx_Mem_dx,d_sy_Mem_dy,d_cx_Mem_dx,d_cy_Mem_dy,d_sx_Mem_dz,d_sy_Mem_dz,d_cx_Mem_dz,d_cy_Mem_dz,d_ws_Mem_dz,ri_Mem,x,fradial_Mem) reduction(vec_double_plus: Nsp_Mem, Axs_Mem, Ays_Mem)
     455             : #endif
     456             : #endif
     457             :   for (unsigned i = 0; i < TAILS.size(); i++) {
     458             :     if (analyzeThisParticle_Mem[i]) {
     459             :       TailPosition = getPbc().realToScaled(pbcDistance(Vector(0.0, 0.0, 0.0), getPosition(i + membraneBeads)));
     460             :       d_Xsc_Mem_dx = 0.0;
     461             :       d_Xcc_Mem_dx = 0.0;
     462             :       d_Ysc_Mem_dy = 0.0;
     463             :       d_Ycc_Mem_dy = 0.0;
     464             :       d_Xsc_Mem_dz = 0.0;
     465             :       d_Xcc_Mem_dz = 0.0;
     466             :       d_Ysc_Mem_dz = 0.0;
     467             :       d_Ycc_Mem_dz = 0.0;
     468             :       for (unsigned s = s1_Mem[i]; s <= s2_Mem[i]; s++) {
     469             :         if (Fs_Mem[s] != 0.0) {
     470             :           d_sx_Mem_dx = faxial_Mem[i + TAILS.size() * s] * 2.0 * M_PI * cos(2.0 * M_PI * TailPosition[0]) / (Lx * Fs_Mem[s]);
     471             :           d_sy_Mem_dy = faxial_Mem[i + TAILS.size() * s] * 2.0 * M_PI * cos(2.0 * M_PI * TailPosition[1]) / (Ly * Fs_Mem[s]);
     472             :           d_cx_Mem_dx = -faxial_Mem[i + TAILS.size() * s] * 2.0 * M_PI * sin(2.0 * M_PI * TailPosition[0]) / (Lx * Fs_Mem[s]);
     473             :           d_cy_Mem_dy = -faxial_Mem[i + TAILS.size() * s] * 2.0 * M_PI * sin(2.0 * M_PI * TailPosition[1]) / (Ly * Fs_Mem[s]);
     474             :           d_Xsc_Mem_dx += ws_Mem[s] * d_sx_Mem_dx / W_Mem;
     475             :           d_Xcc_Mem_dx += ws_Mem[s] * d_cx_Mem_dx / W_Mem;
     476             :           d_Ysc_Mem_dy += ws_Mem[s] * d_sy_Mem_dy / W_Mem;
     477             :           d_Ycc_Mem_dy += ws_Mem[s] * d_cy_Mem_dy / W_Mem;
     478             : 
     479             :           d_sx_Mem_dz = d_faxial_Mem_dz[i + TAILS.size() * s] * (sin(2.0 * M_PI * TailPosition[0]) - sx_Mem[s]) / Fs_Mem[s];
     480             :           d_sy_Mem_dz = d_faxial_Mem_dz[i + TAILS.size() * s] * (sin(2.0 * M_PI * TailPosition[1]) - sy_Mem[s]) / Fs_Mem[s];
     481             :           d_cx_Mem_dz = d_faxial_Mem_dz[i + TAILS.size() * s] * (cos(2.0 * M_PI * TailPosition[0]) - cx_Mem[s]) / Fs_Mem[s];
     482             :           d_cy_Mem_dz = d_faxial_Mem_dz[i + TAILS.size() * s] * (cos(2.0 * M_PI * TailPosition[1]) - cy_Mem[s]) / Fs_Mem[s];
     483             :           d_ws_Mem_dz = (1 - pow(ws_Mem[s], 2)) * d_faxial_Mem_dz[i + TAILS.size() * s];
     484             :           d_Xsc_Mem_dz += (ws_Mem[s] * d_sx_Mem_dz + d_ws_Mem_dz * (sx_Mem[s] - Xsc_Mem)) / W_Mem;
     485             :           d_Xcc_Mem_dz += (ws_Mem[s] * d_cx_Mem_dz + d_ws_Mem_dz * (cx_Mem[s] - Xcc_Mem)) / W_Mem;
     486             :           d_Ysc_Mem_dz += (ws_Mem[s] * d_sy_Mem_dz + d_ws_Mem_dz * (sy_Mem[s] - Ysc_Mem)) / W_Mem;
     487             :           d_Ycc_Mem_dz += (ws_Mem[s] * d_cy_Mem_dz + d_ws_Mem_dz * (cy_Mem[s] - Ycc_Mem)) / W_Mem;
     488             :         }
     489             :       }
     490             :       d_Xcyl_Mem_dx[i] = auxX_Mem * (-Xsc_Mem * d_Xcc_Mem_dx + Xcc_Mem * d_Xsc_Mem_dx);
     491             :       d_Xcyl_Mem_dz[i] = auxX_Mem * (-Xsc_Mem * d_Xcc_Mem_dz + Xcc_Mem * d_Xsc_Mem_dz);
     492             :       d_Ycyl_Mem_dy[i] = auxY_Mem * (-Ysc_Mem * d_Ycc_Mem_dy + Ycc_Mem * d_Ysc_Mem_dy);
     493             :       d_Ycyl_Mem_dz[i] = auxY_Mem * (-Ysc_Mem * d_Ycc_Mem_dz + Ycc_Mem * d_Ysc_Mem_dz);
     494             : 
     495             :       CylDistances_Mem[i] = pbcDistance(xyzCyl_Mem, pbcDistance(Vector(0.0, 0.0, 0.0), getPosition(i + membraneBeads)));
     496             :       ri_Mem = sqrt(pow(CylDistances_Mem[i][0], 2) + pow(CylDistances_Mem[i][1], 2));
     497             :       x = ri_Mem / RCYLMEM[0];
     498             :       if (!((x <= -1.0 - HMEM[0]) || (x >= 1.0 + HMEM[0]))) {
     499             :         if (((-1.0 + HMEM[0]) <= x) && (x <= (1.0 - HMEM[0]))) {
     500             :           fradial_Mem = 1.0;
     501             :         } else if (((1.0 - HMEM[0]) < x) && (x < (1.0 + HMEM[0]))) {
     502             :           fradial_Mem = 0.5 - ((3.0 * x - 3.0) / (4.0 * HMEM[0])) + (pow((x - 1.0), 3) / (4.0 * pow(HMEM[0], 3)));
     503             :           d_fradial_Mem_dx[i] = ((-3.0 / (4.0 * HMEM[0])) + ((3.0 * pow((x - 1), 2)) / (4.0 * pow(HMEM[0], 3)))) * CylDistances_Mem[i][0] / (RCYLMEM[0] * ri_Mem);
     504             :           d_fradial_Mem_dy[i] = ((-3.0 / (4.0 * HMEM[0])) + ((3.0 * pow((x - 1), 2)) / (4.0 * pow(HMEM[0], 3)))) * CylDistances_Mem[i][1] / (RCYLMEM[0] * ri_Mem);
     505             :         } else if (((-1.0 - HMEM[0]) < x) && (x < (-1.0 + HMEM[0]))) {
     506             :           fradial_Mem = 0.5 + ((3.0 * x + 3.0) / (4.0 * HMEM[0])) - (pow((x + 1.0), 3) / (4.0 * pow(HMEM[0], 3)));
     507             :           d_fradial_Mem_dx[i] = ((3.0 / (4.0 * HMEM[0])) - ((3.0 * pow((x + 1), 2)) / (4.0 * pow(HMEM[0], 3)))) * CylDistances_Mem[i][0] / (RCYLMEM[0] * ri_Mem);
     508             :           d_fradial_Mem_dy[i] = ((3.0 / (4.0 * HMEM[0])) - ((3.0 * pow((x + 1), 2)) / (4.0 * pow(HMEM[0], 3)))) * CylDistances_Mem[i][1] / (RCYLMEM[0] * ri_Mem);
     509             :         }
     510             : 
     511             :         for (unsigned s = s1_Mem[i]; s <= s2_Mem[i]; s++) {
     512             :           Nsp_Mem[s] += fradial_Mem * faxial_Mem[i + TAILS.size() * s];
     513             :           Axs_Mem[s] += faxial_Mem[i + TAILS.size() * s] * d_fradial_Mem_dx[i];
     514             :           Ays_Mem[s] += faxial_Mem[i + TAILS.size() * s] * d_fradial_Mem_dy[i];
     515             :           fradial_Mem_d_faxial_Mem_dz[i + TAILS.size() * s] = fradial_Mem * d_faxial_Mem_dz[i + TAILS.size() * s];
     516             :         }
     517             :       }
     518             :     }
     519             :   }
     520             : 
     521         213 :   for (unsigned s = 0; s < NSMEM[0]; s++) {
     522         210 :     if (Nsp_Mem[s] <= 1.0) {
     523         166 :       psi_Mem[s] = ZETAMEM[0] * Nsp_Mem[s];
     524         166 :       d_psi_Mem[s] = ZETAMEM[0];
     525         166 :       Xi_Mem += psi_Mem[s];
     526             :     } else {
     527          44 :       psi_Mem[s] = 1.0 - c_Mem * exp(-b_Mem * Nsp_Mem[s]);
     528          44 :       d_psi_Mem[s] = b_Mem * c_Mem * exp(-b_Mem * Nsp_Mem[s]);
     529          44 :       Xi_Mem += psi_Mem[s];
     530             :     }
     531             :   }
     532             : 
     533           3 :   Xi_Mem = Xi_Mem / NSMEM[0];
     534             : 
     535             :   // Eq. 18 Hub & Awasthi JCTC 2017.
     536           3 :   std::vector<double> faxial_Mem_d_fradial_Mem_dx(TAILS.size() * NSMEM[0]), faxial_Mem_d_fradial_Mem_dy(TAILS.size() * NSMEM[0]), faxial_Mem_d_fradial_Mem_dz(TAILS.size() * NSMEM[0]);
     537             : 
     538             :   // Eq. 13 Hub & Awasthi JCTC 2017.
     539           3 :   std::vector<Vector> derivatives_Mem(TAILS.size());
     540             : 
     541             : #ifdef _OPENMP
     542             : #if _OPENMP >= 201307
     543           3 :   #pragma omp parallel for private(aux)
     544             : #endif
     545             : #endif
     546             :   for (unsigned i = 0; i < TAILS.size(); i++) {
     547             :     if (analyzeThisParticle_Mem[i]) {
     548             :       for (unsigned s = s1_Mem[i]; s <= s2_Mem[i]; s++) {
     549             :         if (faxial_Mem[i + TAILS.size() * s]) {
     550             :           faxial_Mem_d_fradial_Mem_dx[i + TAILS.size() * s] = faxial_Mem[i + TAILS.size() * s] * d_fradial_Mem_dx[i] - d_Xcyl_Mem_dx[i] * Axs_Mem[s];
     551             :           faxial_Mem_d_fradial_Mem_dy[i + TAILS.size() * s] = faxial_Mem[i + TAILS.size() * s] * d_fradial_Mem_dy[i] - d_Ycyl_Mem_dy[i] * Ays_Mem[s];
     552             :           faxial_Mem_d_fradial_Mem_dz[i + TAILS.size() * s] = -d_Xcyl_Mem_dz[i] * Axs_Mem[s] - d_Ycyl_Mem_dz[i] * Ays_Mem[s];
     553             :         }
     554             :       }
     555             : 
     556             :       for (unsigned s = s1_Mem[i]; s <= s2_Mem[i]; s++) {
     557             :         aux = d_psi_Mem[s] / NSMEM[0];
     558             :         derivatives_Mem[i][0] += aux * faxial_Mem_d_fradial_Mem_dx[i + TAILS.size() * s];
     559             :         derivatives_Mem[i][1] += aux * faxial_Mem_d_fradial_Mem_dy[i + TAILS.size() * s];
     560             :         derivatives_Mem[i][2] += aux * (faxial_Mem_d_fradial_Mem_dz[i + TAILS.size() * s] + fradial_Mem_d_faxial_Mem_dz[i + TAILS.size() * s]);
     561             :       }
     562             :     }
     563             :   }
     564             : 
     565             :   // Derivatives and virial for the Xi_Mem.
     566             :   Tensor virial;
     567       12291 :   for (unsigned i = 0; i < TAILS.size(); i++) {
     568       12288 :     setAtomsDerivatives((i + membraneBeads), derivatives_Mem[i]);
     569       24576 :     virial -= Tensor(CylDistances_Mem[i], derivatives_Mem[i]);
     570             :   }
     571             : 
     572           3 :   setValue(Xi_Mem);
     573           3 :   setBoxDerivatives(virial);
     574           3 : }
     575             : }
     576             : }

Generated by: LCOV version 1.16