LCOV - code coverage report
Current view: top level - refdist - EuclideanDistance.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 27 28 96.4 %
Date: 2025-12-04 11:19:34 Functions: 2 3 66.7 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             :    Copyright (c) 2016-2018 The plumed team
       3             :    (see the PEOPLE file at the root of the distribution for a list of names)
       4             : 
       5             :    See http://www.plumed.org for more information.
       6             : 
       7             :    This file is part of plumed, version 2.
       8             : 
       9             :    plumed is free software: you can redistribute it and/or modify
      10             :    it under the terms of the GNU Lesser General Public License as published by
      11             :    the Free Software Foundation, either version 3 of the License, or
      12             :    (at your option) any later version.
      13             : 
      14             :    plumed is distributed in the hope that it will be useful,
      15             :    but WITHOUT ANY WARRANTY; without even the implied warranty of
      16             :    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      17             :    GNU Lesser General Public License for more details.
      18             : 
      19             :    You should have received a copy of the GNU Lesser General Public License
      20             :    along with plumed.  If not, see <http://www.gnu.org/licenses/>.
      21             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      22             : #include "core/ActionRegister.h"
      23             : #include "core/ActionShortcut.h"
      24             : #include "core/PlumedMain.h"
      25             : #include "core/ActionSet.h"
      26             : #include "core/ActionWithValue.h"
      27             : 
      28             : //+PLUMEDOC MCOLVAR EUCLIDEAN_DISTANCE
      29             : /*
      30             : Calculate the euclidean distance between two vectors of arguments
      31             : 
      32             : If we have two $n$-dimensional vectors $u$ and $v$ we can calculate the
      33             : [Euclidean distance](https://en.wikipedia.org/wiki/Euclidean_distance) between the two points as
      34             : 
      35             : $$
      36             : d = \sqrt{ \sum_{i=1}^n (u_i - v_i)^2 }
      37             : $$
      38             : 
      39             : which can be expressed in matrix form as:
      40             : 
      41             : $$
      42             : d^2 = (u-v)^T (u-v)
      43             : $$
      44             : 
      45             : The input below shows an example where this is used to calculate the Euclidean distance
      46             : between the instaneous values of some torsional angles and some reference values
      47             : for these torsion.  In this first example the input values are vectors:
      48             : 
      49             : ```plumed
      50             : c: CONSTANT VALUES=1,2,3
      51             : d: DISTANCE ATOMS1=1,2 ATOMS2=3,4 ATOMS3=5,6
      52             : dd: EUCLIDEAN_DISTANCE ARG1=c ARG2=d
      53             : PRINT ARG=dd FILE=colvar
      54             : ```
      55             : 
      56             : while this second example does the same thing but uses scalars in input.
      57             : 
      58             : ```plumed
      59             : c1: CONSTANT VALUE=1
      60             : d1: DISTANCE ATOMS=1,2
      61             : c2: CONSTANT VALUE=2
      62             : d2: DISTANCE ATOMS=3,4
      63             : c3: CONSTANT VALUE=3
      64             : d3: DISTANCE ATOMS=5,6
      65             : dd: EUCLIDEAN_DISTANCE ARG1=c1,c2,c3 ARG2=d1,d2,d3
      66             : PRINT ARG=dd FILE=colvar
      67             : ```
      68             : 
      69             : Lastly, note that if you want to calculate the square of the distance rather than the distance you can use
      70             : the `SQUARED` flag as shown below:
      71             : 
      72             : ```plumed
      73             : c: CONSTANT VALUES=1,2,3
      74             : d: DISTANCE ATOMS1=1,2 ATOMS2=3,4 ATOMS3=5,6
      75             : dd: EUCLIDEAN_DISTANCE ARG1=c ARG2=d SQUARED
      76             : PRINT ARG=dd FILE=colvar
      77             : ```
      78             : 
      79             : Calculating the square of the distance is slightly cheapter than computing the distance as you avoid taking the square root.
      80             : 
      81             : ## Calculating multiple distances
      82             : 
      83             : Suppose that we now have $m$ reference configurations we can define the following $m$ distances
      84             : from these reference configurations:
      85             : 
      86             : $$
      87             : d_j^2 = (u-v_j)^T (u-v_j)
      88             : $$
      89             : 
      90             : Lets suppose that we put the $m$, $n$-dimensional $(u-v_j)$ vectors in this expression into a
      91             : $n\times m$ matrix, $A$, by using the [DISPLACEMENT](DISPLACEMENT.md) command.  It is then
      92             : straightforward to show that the $d_j^2$ values in the above expression are then the diagonal
      93             : elements of the matrix product $A^T A$.
      94             : 
      95             : We can use this idea to calculate multiple EUCLIDEAN_DISTANCE values in the following inputs.
      96             : This first example calculates the three distances between the instaneoues values of two torsions
      97             : and three reference configurations.
      98             : 
      99             : ```plumed
     100             : ref_psi: CONSTANT VALUES=2.25,1.3,-1.5
     101             : ref_phi: CONSTANT VALUES=-1.91,-0.6,2.4
     102             : 
     103             : psi: TORSION ATOMS=1,2,3,4
     104             : phi: TORSION ATOMS=13,14,15,16
     105             : 
     106             : dd: EUCLIDEAN_DISTANCE ARG2=psi,phi ARG1=ref_psi,ref_phi
     107             : PRINT ARG=dd FILE=colvar
     108             : ```
     109             : 
     110             : This section example calculates the three distances between a single reference value for the two
     111             : torsions and three instances of this pair of torsions.
     112             : 
     113             : ```plumed
     114             : ref_psi: CONSTANT VALUES=2.25
     115             : ref_phi: CONSTANT VALUES=-1.91
     116             : 
     117             : psi: TORSION ATOMS1=1,2,3,4 ATOMS2=5,6,7,8 ATOMS3=9,10,11,12
     118             : phi: TORSION ATOMS1=13,14,15,16 ATOMS2=17,18,19,20 ATOMS3=21,22,23,24
     119             : 
     120             : dd: EUCLIDEAN_DISTANCE ARG1=psi,phi ARG2=ref_psi,ref_phi
     121             : PRINT ARG=dd FILE=colvar
     122             : ```
     123             : 
     124             : This final example then computes three distances between three pairs of torsional angles and threee
     125             : reference values for these three values.
     126             : 
     127             : ```plumed
     128             : ref_psi: CONSTANT VALUES=2.25,1.3,-1.5
     129             : ref_phi: CONSTANT VALUES=-1.91,-0.6,2.4
     130             : 
     131             : psi: TORSION ATOMS1=1,2,3,4 ATOMS2=5,6,7,8 ATOMS3=9,10,11,12
     132             : phi: TORSION ATOMS1=13,14,15,16 ATOMS2=17,18,19,20 ATOMS3=21,22,23,24
     133             : 
     134             : dd: EUCLIDEAN_DISTANCE ARG1=psi,phi ARG2=ref_psi,ref_phi
     135             : PRINT ARG=dd FILE=colvar
     136             : ```
     137             : 
     138             : !!! note "scalars must be specified in ARG2"
     139             : 
     140             :     If you use a mixture of vectors are scalars when specifying the input to to this action the
     141             :     vectors should be passed using the ARG1 keyword and the scalars must be passed in the ARG2 keyword
     142             :     as is done in the example inputs above.
     143             : 
     144             : */
     145             : //+ENDPLUMEDOC
     146             : 
     147             : namespace PLMD {
     148             : namespace refdist {
     149             : 
     150             : class EuclideanDistance : public ActionShortcut {
     151             : public:
     152             :   static void registerKeywords( Keywords& keys );
     153             :   explicit EuclideanDistance(const ActionOptions&ao);
     154             : };
     155             : 
     156             : PLUMED_REGISTER_ACTION(EuclideanDistance,"EUCLIDEAN_DISTANCE")
     157             : 
     158          35 : void EuclideanDistance::registerKeywords( Keywords& keys ) {
     159          35 :   ActionShortcut::registerKeywords(keys);
     160          35 :   keys.add("compulsory","ARG1","The poin that we are calculating the distance from");
     161          35 :   keys.add("compulsory","ARG2","The point that we are calculating the distance to");
     162          35 :   keys.addFlag("SQUARED",false,"The squared distance should be calculated");
     163          70 :   keys.setValueDescription("scalar/vector","the euclidean distances between the input vectors");
     164          35 :   keys.needsAction("DISPLACEMENT");
     165          35 :   keys.needsAction("CUSTOM");
     166          35 :   keys.needsAction("TRANSPOSE");
     167          35 :   keys.needsAction("MATRIX_PRODUCT_DIAGONAL");
     168          35 : }
     169             : 
     170          28 : EuclideanDistance::EuclideanDistance( const ActionOptions& ao):
     171             :   Action(ao),
     172          28 :   ActionShortcut(ao) {
     173             :   std::string arg1, arg2;
     174          28 :   parse("ARG1",arg1);
     175          28 :   parse("ARG2",arg2);
     176             :   // Vectors are in rows here
     177          56 :   readInputLine( getShortcutLabel() + "_diff: DISPLACEMENT ARG1=" + arg1 + " ARG2=" + arg2 );
     178             :   // Get the action that computes the differences
     179          28 :   ActionWithValue* av = plumed.getActionSet().selectWithLabel<ActionWithValue*>( getShortcutLabel() + "_diff");
     180          28 :   plumed_assert( av );
     181             :   // Check if squared
     182             :   bool squared;
     183          28 :   parseFlag("SQUARED",squared);
     184          28 :   std::string olab = getShortcutLabel();
     185          28 :   if( !squared ) {
     186             :     olab += "_2";
     187             :   }
     188             :   // Deal with an annoying corner case when displacement has a single argument
     189          28 :   if( av->copyOutput(0)->getRank()==0 ) {
     190           0 :     readInputLine( olab + ": CUSTOM ARG=" + getShortcutLabel() + "_diff FUNC=x*x PERIODIC=NO");
     191             :   } else {
     192             :     // Notice that the vectors are in the columns here
     193          56 :     readInputLine( getShortcutLabel() + "_diffT: TRANSPOSE ARG=" + getShortcutLabel() + "_diff");
     194          56 :     readInputLine( olab + ": MATRIX_PRODUCT_DIAGONAL ARG=" + getShortcutLabel() + "_diff," + getShortcutLabel() + "_diffT");
     195             :   }
     196          28 :   if( !squared ) {
     197          46 :     readInputLine( getShortcutLabel() + ": CUSTOM ARG=" + getShortcutLabel() + "_2 FUNC=sqrt(x) PERIODIC=NO");
     198             :   }
     199          28 : }
     200             : 
     201             : }
     202             : }

Generated by: LCOV version 1.16