LCOV - code coverage report
Current view: top level - symfunc - ThreeBodyGFunctions.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 160 183 87.4 %
Date: 2025-12-04 11:19:34 Functions: 12 13 92.3 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             :    Copyright (c) 2013-2017 The plumed team
       3             :    (see the PEOPLE file at the root of the distribution for a list of names)
       4             : 
       5             :    See http://www.plumed.org for more information.
       6             : 
       7             :    This file is part of plumed, version 2.
       8             : 
       9             :    plumed is free software: you can redistribute it and/or modify
      10             :    it under the terms of the GNU Lesser General Public License as published by
      11             :    the Free Software Foundation, either version 3 of the License, or
      12             :    (at your option) any later version.
      13             : 
      14             :    plumed is distributed in the hope that it will be useful,
      15             :    but WITHOUT ANY WARRANTY; without even the implied warranty of
      16             :    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      17             :    GNU Lesser General Public License for more details.
      18             : 
      19             :    You should have received a copy of the GNU Lesser General Public License
      20             :    along with plumed.  If not, see <http://www.gnu.org/licenses/>.
      21             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      22             : #include "core/ActionWithVector.h"
      23             : #include "core/ParallelTaskManager.h"
      24             : #include "core/ActionRegister.h"
      25             : #include "tools/LeptonCall.h"
      26             : #include "tools/Angle.h"
      27             : 
      28             : namespace PLMD {
      29             : namespace symfunc {
      30             : 
      31             : //+PLUMEDOC COLVAR GSYMFUNC_THREEBODY
      32             : /*
      33             : Calculate functions of the coordinates of the coordinates of all pairs of bonds in the first coordination sphere of an atom
      34             : 
      35             : This shortcut can be used to calculate [symmetry function](https://www.plumed-tutorials.org/lessons/23/001/data/SymmetryFunction.html) that
      36             : are like those defined by Behler in the paper that is cited in the bibliography below. The particular symmetry functions that are computed
      37             : by this shortcut are the angular ones that are functions of the set pairs of atoms in the coordination sphere of the central atom.  One of
      38             : the angular symmetry functions that Behler introduces is:
      39             : 
      40             : $$
      41             : G^5_i = 2^{1-\zeta} \sum_{j,k\ne i} (1 + \lambda\cos\theta_{ijk})^\zeta e^{-\nu(R_{ij}^2 + R_{ik}^2)} f_c(R_{ij}) f_c(R_{ik})
      42             : $$
      43             : 
      44             : In this expression $\zeta$, $\nu$ and $\lambda$ are all parameters.  $f_c$ is a switching function which acts upon $R_{ij}$, the distance between atom $i$ and atom $j$, and
      45             : $R_{ik}$, the distance between atom $i$ and atom $k$.  $\theta_{ijk}$ is then the angle between the vector that points from atom $i$ to atom $j$ and the vector that points from
      46             : atom $i$ to atom $k$.  THe input below can be used to get PLUMED to calculate the 100 values for this symmetry function for the 100 atoms in a system.
      47             : 
      48             : ```plumed
      49             : # Calculate the contact matrix and the x,y and z components of the bond vectors
      50             : # This action calculates 4 100x100 matrices
      51             : cmat: CONTACT_MATRIX GROUP=1-100 SWITCH={CUSTOM R_0=4.5 D_MAX=4.5 FUNC=0.5*(cos(pi*x)+1)} COMPONENTS
      52             : 
      53             : # Compute the symmetry function for the 100 atoms from the 4 100x100 matrices output
      54             : # by cmat.  The output from this action is a vector with 100 elements
      55             : beh3: GSYMFUNC_THREEBODY ...
      56             :     WEIGHT=cmat.w ARG=cmat.x,cmat.y,cmat.z
      57             :     FUNCTION1={FUNC=0.25*exp(-0.1*(rij+rik))*(1+3*cos(ajik))^3 LABEL=g5}
      58             : ...
      59             : 
      60             : # Print the 100 symmetry function values to a file
      61             : PRINT ARG=beh3.g5 FILE=colvar
      62             : ```
      63             : 
      64             : The GSYMFUNC_THREEBODY action sums over all the distinct triples of atoms that are identified in the contact matrix.  This action uses the same functionality as [CUSTOM](CUSTOM.md) and can thus compute any
      65             : function of the following four quantities:
      66             : 
      67             : * `rij` - the distance between atom $i$ and atom $j$
      68             : * `rik` - the distance between atom $i$ and atom $k$
      69             : * `rjk` - the distance between atom $j$ and atom $k$
      70             : * `ajik` - the angle between the vector connecting atom $i$ to atom $j$ and the vector connecting atom $i$ to atom $k$.
      71             : 
      72             : Furthermore we can calculate more than one function of these four quantities at a time as illustrated by the input below:
      73             : 
      74             : ```plumed
      75             : # Calculate the contact matrix and the x,y and z components of the bond vectors
      76             : # This action calculates 4 100x100 matrices
      77             : cmat: CONTACT_MATRIX GROUP=1-100 SWITCH={CUSTOM R_0=4.5 D_MAX=4.5 FUNC=0.5*(cos(pi*x)+1)} COMPONENTS
      78             : 
      79             : # Compute the 4 symmetry function below for the 100 atoms from the 4 100x100 matrices output
      80             : # by cmat.  The output from this action is a vector with 100 elements
      81             : beh3: GSYMFUNC_THREEBODY ...
      82             :     WEIGHT=cmat.w ARG=cmat.x,cmat.y,cmat.z
      83             :     FUNCTION1={FUNC=0.25*(cos(pi*sqrt(rjk)/4.5)+1)*exp(-0.1*(rij+rik+rjk))*(1+2*cos(ajik))^2 LABEL=g4}
      84             :     FUNCTION2={FUNC=0.25*exp(-0.1*(rij+rik))*(1+3.5*cos(ajik))^3 LABEL=g5}
      85             :     FUNCTION3={FUNC=0.125*(1+6.6*cos(ajik))^4 LABEL=g6}
      86             :     FUNCTION4={FUNC=sin(3.0*(ajik-1)) LABEL=g7}
      87             : ...
      88             : 
      89             : # Print the 4 sets of 100 symmetry function values to a file
      90             : PRINT ARG=beh3.g4,beh3.g5,beh3.g6,beh3.g7 FILE=colvar
      91             : ```
      92             : 
      93             : You can even use this action in tandem with the features that are in the [volumes module](module_volumes.md) as shown below:
      94             : 
      95             : ```plumed
      96             : # The atoms that are of interest
      97             : ow: GROUP ATOMS=1-16500
      98             : # Fixed virtual atom which serves as the probe volume's center (pos. in nm)
      99             : center: FIXEDATOM AT=2.5,2.5,2.5
     100             : # Vector in which element i is one if atom i is in sphere of interest and zero otherwise
     101             : sphere: INSPHERE ATOMS=ow CENTER=center RADIUS={GAUSSIAN D_0=0.5 R_0=0.01 D_MAX=0.52}
     102             : # The distance matrix
     103             : dmap: DISTANCE_MATRIX COMPONENTS GROUP=ow CUTOFF=1.0 MASK=sphere
     104             : # Find the four nearest neighbors
     105             : acv_neigh: NEIGHBORS ARG=dmap.w NLOWEST=4 MASK=sphere
     106             : # Compute a function for the atoms that are in the first coordination sphere
     107             : acv_g8: GSYMFUNC_THREEBODY ...
     108             :   WEIGHT=acv_neigh ARG=dmap.x,dmap.y,dmap.z
     109             :   FUNCTION1={FUNC=(cos(ajik)+1/3)^2 LABEL=g8}
     110             :   MASK=sphere
     111             : ...
     112             : # Now compute the value of the function above for those atoms that are in the
     113             : # sphere of interest
     114             : acv: CUSTOM ARG=acv_g8.g8,sphere FUNC=y*(1-(3*x/8)) PERIODIC=NO
     115             : # And now compute the final average
     116             : acv_sum: SUM ARG=acv PERIODIC=NO
     117             : acv_norm: SUM ARG=sphere PERIODIC=NO
     118             : mean: CUSTOM ARG=acv_sum,acv_norm FUNC=x/y PERIODIC=NO
     119             : PRINT ARG=mean FILE=colvar
     120             : ```
     121             : 
     122             : You can read more about how to calculate more Behler-type symmetry functions [here](https://www.plumed-tutorials.org/lessons/23/001/data/Behler.html).
     123             : 
     124             : */
     125             : //+ENDPLUMEDOC
     126             : 
     127           6 : class ThreeBodyGFunctionsInput {
     128             : public:
     129             :   bool multi_action_input;
     130             :   std::vector<std::string> funcstr;
     131             :   std::vector<LeptonCall> functions;
     132           6 :   ThreeBodyGFunctionsInput& operator=( const ThreeBodyGFunctionsInput& m ) {
     133           6 :     multi_action_input = m.multi_action_input;
     134          17 :     for(unsigned i=0; i<m.funcstr.size(); ++i) {
     135          22 :       addFunction( m.funcstr[i], NULL );
     136             :     }
     137           6 :     return *this;
     138             :   }
     139          22 :   void addFunction( std::string myfunc, ActionWithVector* action ) {
     140          22 :     funcstr.push_back( myfunc );
     141          22 :     functions.push_back( LeptonCall() );
     142          22 :     std::vector<std::string> argnames(1);
     143             :     argnames[0]="ajik";
     144          22 :     if( myfunc.find("rij")!=std::string::npos ) {
     145          16 :       argnames.push_back("rij");
     146             :     }
     147          22 :     if( myfunc.find("rik")!=std::string::npos ) {
     148           8 :       if( action && argnames.size()<2 ) {
     149           0 :         action->error("if you have a function of rik it must also be a function of rij -- email gareth.tribello@gmail.com if this is a problem");
     150             :       }
     151          16 :       argnames.push_back("rik");
     152             :     }
     153          22 :     if( myfunc.find("rjk")!=std::string::npos ) {
     154           6 :       if( action && argnames.size()<2 ) {
     155           0 :         action->error("if you have a function of rjk it must also be a function of rij and rik -- email gareth.tribello@gmail.com if this is a problem");
     156             :       }
     157          12 :       argnames.push_back("rjk");
     158             :     }
     159          22 :     functions[functions.size()-1].set( myfunc, argnames, action, true );
     160          22 :   }
     161             : };
     162             : 
     163             : class ThreeBodyGFunctions : public ActionWithVector {
     164             : public:
     165             :   using input_type = ThreeBodyGFunctionsInput;
     166             :   using PTM = ParallelTaskManager<ThreeBodyGFunctions>;
     167             : private:
     168             :   PTM taskmanager;
     169             : public:
     170             :   static void registerKeywords( Keywords& keys );
     171             :   explicit ThreeBodyGFunctions(const ActionOptions&);
     172             :   std::string getOutputComponentDescription( const std::string& cname, const Keywords& keys ) const override ;
     173             :   void calculate() override ;
     174             :   void applyNonZeroRankForces( std::vector<double>& outforces ) override ;
     175             :   unsigned getNumberOfDerivatives() override;
     176             :   static std::size_t getIndex( std::size_t irow, std::size_t jcol, const ArgumentBookeepingHolder& mat );
     177             :   static void performTask( std::size_t task_index, const ThreeBodyGFunctionsInput& actiondata, ParallelActionsInput& input, ParallelActionsOutput& output );
     178             :   static int getNumberOfValuesPerTask( std::size_t task_index, const ThreeBodyGFunctionsInput& actiondata );
     179             :   static void getForceIndices( std::size_t task_index, std::size_t colno, std::size_t ntotal_force, const ThreeBodyGFunctionsInput& actiondata, const ParallelActionsInput& input, ForceIndexHolder force_indices );
     180             : };
     181             : 
     182             : PLUMED_REGISTER_ACTION(ThreeBodyGFunctions,"GSYMFUNC_THREEBODY")
     183             : 
     184          11 : void ThreeBodyGFunctions::registerKeywords( Keywords& keys ) {
     185          11 :   ActionWithVector::registerKeywords( keys );
     186          22 :   keys.addInputKeyword("optional","MASK","vector","a vector that is used to used to determine which symmetry functions should be calculated");
     187          22 :   keys.addInputKeyword("compulsory","ARG","matrix","three matrices containing the bond vectors of interest");
     188          22 :   keys.addInputKeyword("compulsory","WEIGHT","matrix","the matrix that contains the weights that should be used for each connection");
     189          11 :   keys.add("numbered","FUNCTION","the parameters of the function you would like to compute");
     190          11 :   PTM::registerKeywords( keys );
     191          11 :   ActionWithValue::useCustomisableComponents( keys );
     192          11 :   keys.addDOI("10.1063/1.3553717");
     193          11 : }
     194             : 
     195           6 : ThreeBodyGFunctions::ThreeBodyGFunctions(const ActionOptions&ao):
     196             :   Action(ao),
     197             :   ActionWithVector(ao),
     198           6 :   taskmanager(this) {
     199             :   unsigned nargs = getNumberOfArguments();
     200           6 :   if( getNumberOfMasks()>0 ) {
     201           0 :     nargs = nargs - getNumberOfMasks();
     202             :   }
     203           6 :   if( nargs!=3 ) {
     204           0 :     error("found wrong number of arguments in input");
     205             :   }
     206             :   std::vector<Value*> wval;
     207          12 :   parseArgumentList("WEIGHT",wval);
     208           6 :   if( wval.size()!=1 ) {
     209           0 :     error("keyword WEIGHT should be provided with the label of a single action");
     210             :   }
     211             : 
     212          24 :   for(unsigned i=0; i<3; ++i) {
     213          18 :     if( getPntrToArgument(i)->getRank()!=2 ) {
     214           0 :       error("input argument should be a matrix");
     215             :     }
     216          18 :     if( wval[0]->getShape()[0]!=getPntrToArgument(i)->getShape()[0] || wval[0]->getShape()[1]!=getPntrToArgument(i)->getShape()[1] ) {
     217           0 :       error("mismatched shapes of matrices in input");
     218             :     }
     219             :   }
     220           6 :   log.printf("  using bond weights from matrix labelled %s \n",wval[0]->getName().c_str() );
     221             :   // Rerequest the arguments
     222           6 :   std::vector<Value*> myargs( getArguments() );
     223           6 :   myargs.push_back( wval[0] );
     224           6 :   requestArguments( myargs );
     225           6 :   std::vector<std::size_t> shape(1);
     226           6 :   shape[0] = getPntrToArgument(0)->getShape()[0];
     227             : 
     228             :   // And now read the functions to compute
     229             :   ThreeBodyGFunctionsInput input;
     230           6 :   for(int i=1;; i++) {
     231             :     std::string myfunc, mystr, lab, num;
     232          17 :     Tools::convert(i,num);
     233          34 :     if( !parseNumbered("FUNCTION",i,mystr ) ) {
     234             :       break;
     235             :     }
     236          11 :     std::vector<std::string> data=Tools::getWords(mystr);
     237          22 :     if( !Tools::parse(data,"LABEL",lab ) ) {
     238           0 :       error("found no LABEL in FUNCTION" + num + " specification");
     239             :     }
     240          11 :     addComponent( lab, shape );
     241          11 :     componentIsNotPeriodic( lab );
     242          22 :     if( !Tools::parse(data,"FUNC",myfunc) ) {
     243           0 :       error("found no FUNC in FUNCTION" + num + " specification");
     244             :     }
     245          11 :     log.printf("  component labelled %s is computed using %s \n",lab.c_str(), myfunc.c_str() );
     246          11 :     input.addFunction( myfunc, this );
     247          22 :   }
     248           6 :   checkRead();
     249           6 :   input.multi_action_input = getPntrToArgument(3)->getPntrToAction()!=getPntrToArgument(0)->getPntrToAction();
     250           6 :   taskmanager.setupParallelTaskManager( 4*wval[0]->getShape()[1], 0 );
     251           6 :   taskmanager.setActionInput( input );
     252           6 : }
     253             : 
     254           2 : std::string ThreeBodyGFunctions::getOutputComponentDescription( const std::string& cname, const Keywords& keys ) const {
     255           3 :   for(unsigned i=0; i<getNumberOfComponents(); ++i) {
     256           6 :     if( getConstPntrToComponent(i)->getName().find(cname)!=std::string::npos ) {
     257             :       std::string num;
     258           2 :       Tools::convert( i+1, num );
     259           4 :       return "the function defined by the FUNCTION" + num + " keyword";
     260             :     }
     261             :   }
     262           0 :   plumed_error();
     263             :   return "";
     264             : }
     265             : 
     266          36 : unsigned ThreeBodyGFunctions::getNumberOfDerivatives() {
     267          36 :   return 0;
     268             : }
     269             : 
     270          19 : void ThreeBodyGFunctions::calculate() {
     271          19 :   taskmanager.runAllTasks();
     272          19 : }
     273             : 
     274        3072 : std::size_t ThreeBodyGFunctions::getIndex( std::size_t irow, std::size_t jcol, const ArgumentBookeepingHolder& mat ) {
     275        3072 :   if( mat.shape[1]==mat.ncols ) {
     276           0 :     return irow*mat.ncols + jcol;
     277             :   }
     278       99105 :   for(unsigned i=0; i<mat.bookeeping[(1+mat.ncols)*irow]; ++i) {
     279       99105 :     if( mat.bookeeping[(1+mat.ncols)*irow+1+i]==jcol ) {
     280        3072 :       return irow*mat.ncols+i;
     281             :     }
     282             :   }
     283           0 :   plumed_merror("could not find index");
     284             :   return 0;
     285             : }
     286             : 
     287         600 : void ThreeBodyGFunctions::performTask( std::size_t task_index, const ThreeBodyGFunctionsInput& actiondata, ParallelActionsInput& input, ParallelActionsOutput& output ) {
     288             :   const double* xpntr=NULL;
     289             :   const double* ypntr=NULL;
     290             :   const double* zpntr=NULL;
     291             :   /// This function uses lepton so it is unlikely that we will GPU it.  that is why I have allowed myself to create vectors here
     292             :   std::vector<double> xvals, yvals, zvals;
     293         600 :   auto arg0 = ArgumentBookeepingHolder::create( 0, input );
     294         600 :   auto arg1 = ArgumentBookeepingHolder::create( 1, input );
     295         600 :   auto arg2 = ArgumentBookeepingHolder::create( 2, input);
     296         600 :   auto arg3 = ArgumentBookeepingHolder::create( 3, input );
     297             : 
     298         600 :   std::size_t rowlen = arg3.bookeeping[(1+arg3.ncols)*task_index];
     299         600 :   View<const double> wval( input.inputdata + arg3.start + arg3.ncols*task_index, rowlen );
     300         600 :   if( actiondata.multi_action_input ) {
     301         256 :     xvals.resize( rowlen );
     302         256 :     yvals.resize( rowlen );
     303         256 :     zvals.resize( rowlen );
     304         256 :     const auto wbooks = arg3.bookeeping.subview((1+arg3.ncols)*task_index+1, rowlen);
     305        1280 :     for(unsigned i=0; i<rowlen; ++i) {
     306        1024 :       xvals[i] = input.inputdata[arg0.start + getIndex( task_index, wbooks[i], arg0) ];
     307        1024 :       yvals[i] = input.inputdata[arg1.start + getIndex( task_index, wbooks[i], arg1) ];
     308        1024 :       zvals[i] = input.inputdata[arg2.start + getIndex( task_index, wbooks[i], arg2) ];
     309             :     }
     310             :     xpntr = xvals.data();
     311             :     ypntr = yvals.data();
     312             :     zpntr = zvals.data();
     313             :   } else {
     314         344 :     xpntr = input.inputdata + arg0.start + arg0.ncols*task_index;
     315         344 :     ypntr = input.inputdata + arg1.start + arg1.ncols*task_index;
     316         344 :     zpntr = input.inputdata + arg2.start + arg2.ncols*task_index;
     317             :   }
     318             :   View<const double> xval( xpntr, rowlen );
     319             :   View<const double> yval( ypntr, rowlen );
     320             :   View<const double> zval( zpntr, rowlen );
     321      279512 :   for(unsigned i=0; i<output.derivatives.size(); ++i) {
     322      278912 :     output.derivatives[i] = 0;
     323             :   }
     324         600 :   View2D<double> derivatives( output.derivatives.data(), actiondata.functions.size(), 4*arg3.shape[1] );
     325             : 
     326             :   Angle angle;
     327             :   Vector disti, distj;
     328         600 :   std::vector<double> values(4);
     329         600 :   std::vector<Vector> der_i(4), der_j(4);
     330       21878 :   for(unsigned i=0; i<rowlen; ++i) {
     331       21278 :     if( wval[i]<epsilon ) {
     332        9584 :       continue;
     333             :     }
     334       11694 :     disti[0] = xval[i];
     335       11694 :     disti[1] = yval[i];
     336       11694 :     disti[2] = zval[i];
     337       11694 :     values[1] = disti.modulo2();
     338       11694 :     der_i[1]=2*disti;
     339             :     der_i[2].zero();
     340      371037 :     for(unsigned j=0; j<i; ++j) {
     341      359343 :       if( wval[j]<epsilon) {
     342       92168 :         continue;
     343             :       }
     344      267175 :       distj[0] = xval[j];
     345      267175 :       distj[1] = yval[j];
     346      267175 :       distj[2] = zval[j];
     347      267175 :       values[2] = distj.modulo2();
     348             :       der_j[1].zero();
     349      267175 :       der_j[2]=2*distj;
     350      267175 :       der_i[3] = ( disti - distj );
     351      267175 :       values[3] = der_i[3].modulo2();
     352      267175 :       der_i[3] = 2*der_i[3];
     353      267175 :       der_j[3] = -der_i[3];
     354             :       // Compute angle between bonds
     355      267175 :       values[0] = angle.compute( disti, distj, der_i[0], der_j[0] );
     356             :       // Compute product of weights
     357      267175 :       double weightij = wval[i]*wval[j];
     358      815378 :       for(unsigned n=0; n<actiondata.functions.size(); ++n) {
     359      548203 :         double nonweight = actiondata.functions[n].evaluate( values );
     360      548203 :         output.values[n] += nonweight*weightij;
     361             : 
     362      548203 :         if( input.noderiv ) {
     363      277523 :           continue;
     364             :         }
     365             : 
     366      567230 :         for(unsigned m=0; m<actiondata.functions[n].getNumberOfArguments(); ++m) {
     367      296550 :           double der = weightij*actiondata.functions[n].evaluateDeriv( m, values );
     368      296550 :           derivatives[n][i] += der*der_i[m][0];
     369      296550 :           derivatives[n][rowlen+i] += der*der_i[m][1];
     370      296550 :           derivatives[n][2*rowlen+i] += der*der_i[m][2];
     371      296550 :           derivatives[n][j] += der*der_j[m][0];
     372      296550 :           derivatives[n][rowlen+j] += der*der_j[m][1];
     373      296550 :           derivatives[n][2*rowlen+j] += der*der_j[m][2];
     374             :         }
     375      270680 :         derivatives[n][3*rowlen+i] += nonweight*wval[j];
     376      270680 :         derivatives[n][3*rowlen+j] += nonweight*wval[i];
     377             :       }
     378             :     }
     379             :   }
     380         600 : }
     381             : 
     382           2 : void ThreeBodyGFunctions::applyNonZeroRankForces( std::vector<double>& outforces ) {
     383           2 :   taskmanager.applyForces( outforces );
     384           2 : }
     385             : 
     386         128 : int ThreeBodyGFunctions::getNumberOfValuesPerTask( std::size_t task_index, const ThreeBodyGFunctionsInput& actiondata ) {
     387         128 :   return 1;
     388             : }
     389             : 
     390         128 : void ThreeBodyGFunctions::getForceIndices( std::size_t task_index,
     391             :     std::size_t colno,
     392             :     std::size_t ntotal_force,
     393             :     const ThreeBodyGFunctionsInput& actiondata,
     394             :     const ParallelActionsInput& input,
     395             :     ForceIndexHolder force_indices ) {
     396         128 :   auto arg0 = ArgumentBookeepingHolder::create( 0, input );
     397         128 :   auto arg1 = ArgumentBookeepingHolder::create( 1, input );
     398         128 :   auto arg2 = ArgumentBookeepingHolder::create( 2, input);
     399         128 :   auto arg3 = ArgumentBookeepingHolder::create( 3, input );
     400         128 :   std::size_t rowlen = arg3.bookeeping[(1+arg3.ncols)*task_index];
     401         128 :   if( actiondata.multi_action_input ) {
     402           0 :     View<const std::size_t> wbooks( arg3.bookeeping.data()+(1+arg3.ncols)*task_index+1, rowlen);
     403           0 :     for(unsigned j=0; j<rowlen; ++j) {
     404           0 :       std::size_t matpos = task_index*arg3.ncols + j;
     405           0 :       std::size_t xpos = getIndex( task_index, wbooks[j], arg0 );
     406           0 :       std::size_t ypos = getIndex( task_index, wbooks[j], arg1 );
     407           0 :       std::size_t zpos = getIndex( task_index, wbooks[j], arg2 );
     408           0 :       for(unsigned i=0; i<input.ncomponents; ++i) {
     409           0 :         force_indices.indices[i][j] = arg0.start + xpos;
     410           0 :         force_indices.indices[i][rowlen+j] = arg1.start + ypos;
     411           0 :         force_indices.indices[i][2*rowlen+j] = arg2.start + zpos;
     412           0 :         force_indices.indices[i][3*rowlen+j] = arg3.start + matpos;
     413             :       }
     414             :     }
     415             :   } else {
     416        8192 :     for(unsigned j=0; j<rowlen; ++j) {
     417        8064 :       std::size_t matpos = task_index*arg3.ncols + j;
     418       32256 :       for(unsigned i=0; i<input.ncomponents; ++i) {
     419       24192 :         force_indices.indices[i][j] = arg0.start + matpos;
     420       24192 :         force_indices.indices[i][rowlen+j] = arg1.start + matpos;
     421       24192 :         force_indices.indices[i][2*rowlen+j] = arg2.start + matpos;
     422       24192 :         force_indices.indices[i][3*rowlen+j] = arg3.start + matpos;
     423             :       }
     424             :     }
     425             :   }
     426         512 :   for(unsigned i=0; i<input.ncomponents; ++i) {
     427         384 :     force_indices.threadsafe_derivatives_end[i] = force_indices.tot_indices[i] = 4*rowlen;
     428             :   }
     429         128 : }
     430             : 
     431             : }
     432             : }

Generated by: LCOV version 1.16