LCOV - code coverage report
Current view: top level - ves - Opt_BachAveragedSGD.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 60 63 95.2 %
Date: 2025-12-04 11:19:34 Functions: 3 4 75.0 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             :    Copyright (c) 2016-2021 The VES code team
       3             :    (see the PEOPLE-VES file at the root of this folder for a list of names)
       4             : 
       5             :    See http://www.ves-code.org for more information.
       6             : 
       7             :    This file is part of VES code module.
       8             : 
       9             :    The VES code module is free software: you can redistribute it and/or modify
      10             :    it under the terms of the GNU Lesser General Public License as published by
      11             :    the Free Software Foundation, either version 3 of the License, or
      12             :    (at your option) any later version.
      13             : 
      14             :    The VES code module is distributed in the hope that it will be useful,
      15             :    but WITHOUT ANY WARRANTY; without even the implied warranty of
      16             :    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      17             :    GNU Lesser General Public License for more details.
      18             : 
      19             :    You should have received a copy of the GNU Lesser General Public License
      20             :    along with the VES code module.  If not, see <http://www.gnu.org/licenses/>.
      21             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      22             : 
      23             : #include "Optimizer.h"
      24             : #include "CoeffsVector.h"
      25             : #include "CoeffsMatrix.h"
      26             : 
      27             : #include "core/ActionRegister.h"
      28             : #include "core/PlumedMain.h"
      29             : 
      30             : 
      31             : 
      32             : namespace PLMD {
      33             : namespace ves {
      34             : 
      35             : //+PLUMEDOC VES_OPTIMIZER OPT_AVERAGED_SGD
      36             : /*
      37             : Averaged stochastic gradient decent with fixed step size.
      38             : 
      39             : ## Algorithm
      40             : 
      41             : This optimizer updates the coefficients according to the averaged stochastic gradient decent algorithm described [here](https://proceedings.neurips.cc/paper_files/paper/2013/file/7fe1f8abaad094e0b5cb1b01d712f708-Paper.pdf). This algorithm considers two sets of coefficients, the so-called instantaneous coefficients that are updated according to the recursion formula given by
      42             : 
      43             : $$
      44             : \boldsymbol{\alpha}^{(n+1)} = \boldsymbol{\alpha}^{(n)} -
      45             : \mu \left[
      46             : \nabla \Omega(\bar{\boldsymbol{\alpha}}^{(n)}) +
      47             : \mathbf{H}(\bar{\boldsymbol{\alpha}}^{(n)})
      48             : [\boldsymbol{\alpha}^{(n)}-\bar{\boldsymbol{\alpha}}^{(n)}]
      49             : \right],
      50             : $$
      51             : 
      52             : where $\mu$ is a fixed step size and the gradient $ \nabla\Omega(\bar{\boldsymbol{\alpha}}^{(n)})$ and the Hessian $\mathbf{H}(\bar{\boldsymbol{\alpha}}^{(n)})$ depend on the averaged coefficients defined as
      53             : 
      54             : $$
      55             : \bar{\boldsymbol{\alpha}}^{(n)} = \frac{1}{n+1} \sum_{k=0}^{n} \boldsymbol{\alpha}^{(k)}.
      56             : $$
      57             : 
      58             : This means that the bias acting on the system depends on the averaged coefficients $\bar{\boldsymbol{\alpha}}^{(n)}$ which leads to a smooth convergence of the bias and the estimated free energy surface. Furthermore, this allows for a rather short sampling time for each iteration, for classical MD simulations typical sampling times are on the order of few ps (around 1000-4000 MD steps).
      59             : 
      60             : Currently it is only supported to employ the diagonal part of the Hessian which is generally sufficient. Support for employing the full Hessian will be added later on.
      61             : 
      62             : The VES bias that is to be optimized should be specified using the
      63             : BIAS keyword.
      64             : The fixed step size $\mu$ is given using the STEPSIZE keyword.
      65             : The frequency of updating the coefficients is given using the
      66             : STRIDE keyword where the value is given in the number of MD steps.
      67             : For example, if the MD time step is 0.02 ps and STRIDE=2000 will the
      68             : coefficients be updated every 4 ps.
      69             : The coefficients will be outputted to the file given by the
      70             : COEFFS_FILE keyword. How often the coefficients are written
      71             : to this file is controlled by the COEFFS_OUTPUT keyword.
      72             : 
      73             : If the VES bias employs a dynamic target distribution that needs to be
      74             : iteratively updated (e.g. [TD_WELLTEMPERED](TD_WELLTEMPERED.md)) the second paper cited below, you will need to specify
      75             : the stride for updating the target distribution by using
      76             : the TARGETDIST_STRIDE keyword where the stride
      77             : is given in terms coefficient iterations. For example if the
      78             : MD time step is 0.02 ps and STRIDE=1000, such that the coefficients
      79             : are updated every 2 ps, will TARGETDIST_STRIDE=500 mean that the
      80             : target distribution will be updated every 1000 ps.
      81             : 
      82             : The output of the free energy surfaces and biases is controlled by the FES_OUTPUT and the BIAS_OUTPUT
      83             : keywords. It is also possible to output one-dimensional projections of the free energy surfaces
      84             : by using the FES_PROJ_OUTPUT keyword but for that to work you will need to select
      85             : for which argument to do the projections by using the numbered PROJ_ARG keyword in
      86             : the VES bias that is optimized.
      87             : You can also output dynamic target distributions by using the
      88             : TARGETDIST_OUTPUT and TARGETDIST_PROJ_OUTPUT keywords.
      89             : 
      90             : It is possible to start the optimization from some initial set of
      91             : coefficients that have been previously obtained by using the INITIAL_COEFFS
      92             : keyword.
      93             : 
      94             : When restarting simulations it should be sufficient to put the [RESTART](RESTART.md) action
      95             : in the beginning of the input files (or some MD codes the PLUMED should automatically
      96             : detect if it is a restart run) and keep the same input as before The restarting of
      97             : the optimization should be automatic as the optimizer will then read in the
      98             : coefficients from the file given in COEFFS_FILE. For dynamic target
      99             : distribution the code will also read in the final target distribution from the
     100             : previous run (which is always outputted even if the TARGETDIST_OUTPUT keyword
     101             : is not used).
     102             : 
     103             : This optimizer supports the usage of multiple walkers where different copies of the system share the same bias potential (i.e. coefficients) and cooperatively sample the averages needed for the gradient and Hessian. This can significantly help with convergence in difficult cases. It is of course best to start the different copies from different positions in CV space. To activate this option you just need to add the MULTIPLE_WALKERS flag. Note that this is only supported if the MD code support running multiple replicas connected via MPI.
     104             : 
     105             : The optimizer supports the usage of a so-called mask file that can be used to employ different step sizes for different coefficients and/or deactivate the optimization of certain coefficients (by putting values of 0.0). The mask file is read in by using the MASK_FILE keyword and should be in the same format as the coefficient file. It is possible to generate a template mask file by using the OUTPUT_MASK_FILE keyword.
     106             : 
     107             : ## Examples
     108             : 
     109             : In the following input we employ an averaged stochastic gradient decent with a
     110             : fixed step size of 1.0 and update the coefficient every 1000 MD steps
     111             : (e.g. every 2 ps if the MD time step is 0.02 ps). The coefficient are outputted
     112             : to the coefficients.data every 50 iterations while the FES and bias is outputted
     113             : to files every 500 iterations (e.g. every 1000 ps).
     114             : 
     115             : ```plumed
     116             : phi:   TORSION ATOMS=5,7,9,15
     117             : 
     118             : bf1: BF_FOURIER ORDER=5 MINIMUM=-pi MAXIMUM=pi
     119             : 
     120             : VES_LINEAR_EXPANSION ...
     121             :  ARG=phi
     122             :  BASIS_FUNCTIONS=bf1
     123             :  LABEL=ves1
     124             :  TEMP=300.0
     125             :  GRID_BINS=100
     126             : ... VES_LINEAR_EXPANSION
     127             : 
     128             : OPT_AVERAGED_SGD ...
     129             :   BIAS=ves1
     130             :   STRIDE=1000
     131             :   LABEL=o1
     132             :   STEPSIZE=1.0
     133             :   COEFFS_FILE=coefficients.data
     134             :   COEFFS_OUTPUT=50
     135             :   FES_OUTPUT=500
     136             :   BIAS_OUTPUT=500
     137             : ... OPT_AVERAGED_SGD
     138             : ```
     139             : 
     140             : 
     141             : In the following example we employ a well-tempered target distribution that
     142             : is updated every 500 iterations (e.g. every 1000 ps). The target distribution is
     143             : also output to a file every 2000 iterations (the TARGETDIST_OUTPUT keyword).
     144             : Here we also employ MULTIPLE_WALKERS flag to enable the usage of
     145             : multiple walkers.
     146             : 
     147             : ```plumed
     148             : #SETTINGS NREPLICAS=2
     149             : phi:   TORSION ATOMS=5,7,9,15
     150             : psi:   TORSION ATOMS=7,9,15,17
     151             : 
     152             : bf1: BF_FOURIER ORDER=5 MINIMUM=-pi MAXIMUM=pi
     153             : bf2: BF_FOURIER ORDER=4 MINIMUM=-pi MAXIMUM=pi
     154             : 
     155             : td1: TD_WELLTEMPERED BIASFACTOR=10
     156             : 
     157             : VES_LINEAR_EXPANSION ...
     158             :  ARG=phi,psi
     159             :  BASIS_FUNCTIONS=bf1,bf2
     160             :  LABEL=ves1
     161             :  TEMP=300.0
     162             :  GRID_BINS=100,100
     163             :  TARGET_DISTRIBUTION=td1
     164             :  PROJ_ARG1=phi
     165             :  PROJ_ARG2=psi
     166             : ... VES_LINEAR_EXPANSION
     167             : 
     168             : OPT_AVERAGED_SGD ...
     169             :   BIAS=ves1
     170             :   STRIDE=1000
     171             :   LABEL=o1
     172             :   STEPSIZE=1.0
     173             :   MULTIPLE_WALKERS
     174             :   COEFFS_FILE=coefficients.data
     175             :   COEFFS_OUTPUT=50
     176             :   FES_OUTPUT=500
     177             :   FES_PROJ_OUTPUT=500
     178             :   BIAS_OUTPUT=500
     179             :   TARGETDIST_STRIDE=500
     180             :   TARGETDIST_OUTPUT=2000
     181             : ... OPT_AVERAGED_SGD
     182             : ```
     183             : 
     184             : 
     185             : 
     186             : */
     187             : //+ENDPLUMEDOC
     188             : 
     189             : class Opt_BachAveragedSGD : public Optimizer {
     190             : private:
     191             :   std::vector<std::unique_ptr<CoeffsVector>> combinedgradient_pntrs_;
     192             :   unsigned int combinedgradient_wstride_;
     193             :   std::vector<std::unique_ptr<OFile>> combinedgradientOFiles_;
     194             :   double decaying_aver_tau_;
     195             : private:
     196             :   CoeffsVector& CombinedGradient(const unsigned int c_id) const {
     197          60 :     return *combinedgradient_pntrs_[c_id];
     198             :   }
     199             :   double getAverDecay() const;
     200             : public:
     201             :   static void registerKeywords(Keywords&);
     202             :   explicit Opt_BachAveragedSGD(const ActionOptions&);
     203             :   void coeffsUpdate(const unsigned int c_id = 0) override;
     204             : };
     205             : 
     206             : 
     207             : PLUMED_REGISTER_ACTION(Opt_BachAveragedSGD,"OPT_AVERAGED_SGD")
     208             : 
     209             : 
     210          77 : void Opt_BachAveragedSGD::registerKeywords(Keywords& keys) {
     211          77 :   Optimizer::registerKeywords(keys);
     212          77 :   Optimizer::useFixedStepSizeKeywords(keys);
     213          77 :   Optimizer::useMultipleWalkersKeywords(keys);
     214          77 :   Optimizer::useHessianKeywords(keys);
     215          77 :   Optimizer::useMaskKeywords(keys);
     216          77 :   Optimizer::useRestartKeywords(keys);
     217          77 :   Optimizer::useMonitorAverageGradientKeywords(keys);
     218          77 :   Optimizer::useDynamicTargetDistributionKeywords(keys);
     219          77 :   keys.add("hidden","COMBINED_GRADIENT_FILE","the name of output file for the combined gradient (gradient + Hessian term)");
     220          77 :   keys.add("hidden","COMBINED_GRADIENT_OUTPUT","how often the combined gradient should be written to file. This parameter is given as the number of bias iterations. It is by default 100 if COMBINED_GRADIENT_FILE is specficed");
     221          77 :   keys.add("hidden","COMBINED_GRADIENT_FMT","specify format for combined gradient file(s) (useful for decrease the number of digits in regtests)");
     222          77 :   keys.add("optional","EXP_DECAYING_AVER","calculate the averaged coefficients using exponentially decaying averaging using the decaying constant given here in the number of iterations");
     223             : 
     224          77 :   keys.addDOI("10.1021/acs.jctc.5b00076");
     225          77 : }
     226             : 
     227             : 
     228             : 
     229          75 : Opt_BachAveragedSGD::Opt_BachAveragedSGD(const ActionOptions&ao):
     230             :   PLUMED_VES_OPTIMIZER_INIT(ao),
     231          75 :   combinedgradient_wstride_(100),
     232          75 :   decaying_aver_tau_(0.0) {
     233          75 :   log.printf("  Averaged stochastic gradient decent, see and cite ");
     234         150 :   log << plumed.cite("Bach and Moulines, NIPS 26, 773-781 (2013)");
     235          75 :   log.printf("\n");
     236          75 :   unsigned int decaying_aver_tau_int=0;
     237          75 :   parse("EXP_DECAYING_AVER",decaying_aver_tau_int);
     238          75 :   if(decaying_aver_tau_int>0) {
     239           2 :     decaying_aver_tau_ = static_cast<double>(decaying_aver_tau_int);
     240           2 :     log.printf("  Coefficients calculated using an exponentially decaying average with a decaying constant of %u iterations, see and cite ",decaying_aver_tau_int);
     241           4 :     log << plumed.cite("Invernizzi, Valsson, and Parrinello, Proc. Natl. Acad. Sci. USA 114, 3370-3374 (2017)");
     242           2 :     log.printf("\n");
     243             :   }
     244             :   //
     245             :   std::vector<std::string> combinedgradient_fnames;
     246          75 :   parseFilenames("COMBINED_GRADIENT_FILE",combinedgradient_fnames);
     247         150 :   parse("COMBINED_GRADIENT_OUTPUT",combinedgradient_wstride_);
     248          75 :   setupOFiles(combinedgradient_fnames,combinedgradientOFiles_,useMultipleWalkers());
     249          75 :   std::string combinedgradient_fmt="";
     250         150 :   parse("COMBINED_GRADIENT_FMT",combinedgradient_fmt);
     251          75 :   if(combinedgradient_fnames.size()>0) {
     252          12 :     for(unsigned int i=0; i<numberOfCoeffsSets(); i++) {
     253          12 :       auto combinedgradient_tmp = Tools::make_unique<CoeffsVector>(*getGradientPntrs()[i]);
     254           6 :       std::string label = getGradientPntrs()[i]->getLabel();
     255           6 :       if(label.find("gradient")!=std::string::npos) {
     256          12 :         label.replace(label.find("gradient"), std::string("gradient").length(), "combined_gradient");
     257             :       } else {
     258             :         label += "_combined";
     259             :       }
     260           6 :       combinedgradient_tmp->setLabels(label);
     261           6 :       if(combinedgradient_fmt.size()>0) {
     262             :         combinedgradient_tmp->setOutputFmt(combinedgradient_fmt);
     263             :       }
     264           6 :       combinedgradient_pntrs_.emplace_back(std::move(combinedgradient_tmp));
     265           6 :     }
     266             :     //
     267           6 :     if(numberOfCoeffsSets()==1) {
     268          12 :       log.printf("  Combined gradient (gradient + Hessian term) will be written out to file %s every %u iterations\n",combinedgradientOFiles_[0]->getPath().c_str(),combinedgradient_wstride_);
     269             :     } else {
     270           0 :       log.printf("  Combined gradient (gradient + Hessian term) will be written out to the following files every %u iterations:\n",combinedgradient_wstride_);
     271           0 :       for(unsigned int i=0; i<combinedgradientOFiles_.size(); i++) {
     272           0 :         log.printf("   coefficient set %u: %s\n",i,combinedgradientOFiles_[i]->getPath().c_str());
     273             :       }
     274             :     }
     275             :   }
     276             :   //
     277             : 
     278          75 :   turnOnHessian();
     279          75 :   checkRead();
     280          75 : }
     281             : 
     282             : 
     283       22675 : void Opt_BachAveragedSGD::coeffsUpdate(const unsigned int c_id) {
     284             :   //
     285       22675 :   if(combinedgradientOFiles_.size()>0 && (getIterationCounter()+1)%combinedgradient_wstride_==0) {
     286          60 :     CombinedGradient(c_id).setValues( ( Gradient(c_id) + Hessian(c_id)*(AuxCoeffs(c_id)-Coeffs(c_id)) ) );
     287          60 :     combinedgradient_pntrs_[c_id]->setIterationCounterAndTime(getIterationCounter()+1,getTime());
     288          60 :     combinedgradient_pntrs_[c_id]->writeToFile(*combinedgradientOFiles_[c_id]);
     289             :   }
     290             :   //
     291             :   double aver_decay = getAverDecay();
     292       22675 :   AuxCoeffs(c_id) += - StepSize(c_id)*CoeffsMask(c_id) * ( Gradient(c_id) + Hessian(c_id)*(AuxCoeffs(c_id)-Coeffs(c_id)) );
     293             :   //AuxCoeffs() = AuxCoeffs() - StepSize() * ( Gradient() + Hessian()*(AuxCoeffs()-Coeffs()) );
     294       22675 :   Coeffs(c_id) += aver_decay * ( AuxCoeffs(c_id)-Coeffs(c_id) );
     295       22675 : }
     296             : 
     297             : 
     298             : inline
     299             : double Opt_BachAveragedSGD::getAverDecay() const {
     300       22675 :   double aver_decay = 1.0 / ( getIterationCounterDbl() + 1.0 );
     301       22675 :   if(decaying_aver_tau_ > 0.0 && (getIterationCounterDbl() + 1.0) > decaying_aver_tau_) {
     302          14 :     aver_decay = 1.0 / decaying_aver_tau_;
     303             :   }
     304             :   return aver_decay;
     305             : }
     306             : 
     307             : 
     308             : }
     309             : }

Generated by: LCOV version 1.16