LCOV - code coverage report
Current view: top level - ves - TD_Uniform.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 58 64 90.6 %
Date: 2025-12-04 11:19:34 Functions: 4 4 100.0 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             :    Copyright (c) 2016-2021 The VES code team
       3             :    (see the PEOPLE-VES file at the root of this folder for a list of names)
       4             : 
       5             :    See http://www.ves-code.org for more information.
       6             : 
       7             :    This file is part of VES code module.
       8             : 
       9             :    The VES code module is free software: you can redistribute it and/or modify
      10             :    it under the terms of the GNU Lesser General Public License as published by
      11             :    the Free Software Foundation, either version 3 of the License, or
      12             :    (at your option) any later version.
      13             : 
      14             :    The VES code module is distributed in the hope that it will be useful,
      15             :    but WITHOUT ANY WARRANTY; without even the implied warranty of
      16             :    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      17             :    GNU Lesser General Public License for more details.
      18             : 
      19             :    You should have received a copy of the GNU Lesser General Public License
      20             :    along with the VES code module.  If not, see <http://www.gnu.org/licenses/>.
      21             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      22             : 
      23             : #include "TargetDistribution.h"
      24             : 
      25             : #include "core/ActionRegister.h"
      26             : 
      27             : 
      28             : namespace PLMD {
      29             : namespace ves {
      30             : 
      31             : //+PLUMEDOC VES_TARGETDIST TD_UNIFORM
      32             : /*
      33             : Uniform target distribution (static).
      34             : 
      35             : Using this keyword you can define a uniform target distribution which is a
      36             : product of one-dimensional distributions $p_{k}(s_{k})$ that are uniform
      37             : over a given interval $[a_{k},b_{k}]$
      38             : 
      39             : $$
      40             : p_{k}(s_{k}) =
      41             : \left \{\begin{array}{ll}
      42             : \frac{1}{(b_{k}-a_{k})} & \mathrm{if} \ a_{k} \leq s_{k} \leq b_{k} \\
      43             : &\\
      44             : 0 & \mathrm{otherwise}
      45             : \end{array}\right .
      46             : $$
      47             : 
      48             : The overall distribution is then given as
      49             : 
      50             : $$
      51             : p(\mathbf{s}) =
      52             : \prod^{d}_{k} p_{k}(s_{k}) =
      53             : \left\{\begin{array}{ll}
      54             : \prod^{d}_{k} \frac{1}{(b_{k}-a_{k})}
      55             : & \mathrm{if} \ a_{k} \leq s_{k} \leq b_{k} \ \mathrm{for\ all}\ k \\
      56             : \\
      57             : 0 & \mathrm{otherwise}
      58             : \end{array}\right.
      59             : $$
      60             : 
      61             : The distribution is thus uniform inside a rectangular for two arguments
      62             : and a cube for a three arguments.
      63             : 
      64             : The limits of the intervals $ a_{k}$ and $ b_{k}$ are given
      65             : with the MINIMA and MAXIMA keywords, respectively. If one or both of
      66             : these keywords are missing the code should automatically detect the limits.
      67             : 
      68             : 
      69             : It is also possible to use one-dimensional distributions
      70             : that go smoothly to zero at the boundaries.
      71             : This is done by employing a function with
      72             : Gaussian switching functions at the boundaries $a_{k}$ and $b_{k}$
      73             : 
      74             : $$
      75             : f_{k}(s_{k}) =
      76             : \begin{cases}
      77             : \exp\left(-\frac{(s_{k}-a_{k})^2}{2 \sigma^2_{a,k}}\right)
      78             : & \mathrm{if}\, s_{k} < a_{k} \\
      79             : \\
      80             : 1 & \mathrm{if}\, a_{k} \leq s_{k} \leq b_{k} \\
      81             : \\
      82             : \exp\left(-\frac{(s_{k}-b_{k})^2}{2 \sigma^2_{b,k}}\right)
      83             : & \mathrm{if}\, s_{k} > b_{k}
      84             : \end{cases}
      85             : $$
      86             : 
      87             : where the standard deviation parameters $\sigma_{a,k}$
      88             : and $\sigma_{b,k}$ determine how quickly the switching functions
      89             : goes to zero.
      90             : The overall distribution is then normalized
      91             : 
      92             : $$
      93             : p(\mathbf{s}) =
      94             : \prod^{d}_{k} p_{k}(s_{k}) =
      95             : \prod^{d}_{k} \frac{f(s_{k})}{\int d s_{k} \, f(s_{k})}
      96             : $$
      97             : 
      98             : To use this option you need to provide the standard deviation
      99             : parameters $\sigma_{a,k}$ and $\sigma_{b,k}$ by using the
     100             : SIGMA_MINIMA and SIGMA_MAXIMA keywords, respectively. Giving a value of
     101             : 0.0 means that the boundary is sharp, which is the default behavior.
     102             : 
     103             : 
     104             : 
     105             : 
     106             : 
     107             : 
     108             : ## Examples
     109             : 
     110             : If one or both of the MINIMA or MAXIMA keywords are missing
     111             : the code should automatically detect the limits not given.
     112             : Therefore, if we consider a target distribution that is
     113             : defined over an interval from 0.0 to 10.0 for the first
     114             : argument and from 0.2 to 1.0 for the second argument are
     115             : the following example
     116             : 
     117             : ```plumed
     118             : td: TD_UNIFORM
     119             : ```
     120             : 
     121             : is equivalent to this one
     122             : 
     123             : ```plumed
     124             : TD_UNIFORM ...
     125             :  MINIMA=0.0,0.2
     126             :  MAXIMA=10.0,1.0
     127             :  LABEL=td
     128             :  ... TD_UNIFORM
     129             : ```
     130             : 
     131             : and this one
     132             : 
     133             : ```plumed
     134             : td: TD_UNIFORM  MAXIMA=10.0,1.0
     135             : ```
     136             : 
     137             : and also this one
     138             : 
     139             : ```plumed
     140             : td: TD_UNIFORM MINIMA=0.0,0,2
     141             : ```
     142             : 
     143             : 
     144             : We can also define a target distribution that goes smoothly to zero
     145             : at the boundaries of the uniform distribution. In the following
     146             : we consider an interval of 0 to 10 for the target distribution.
     147             : The following input would result in a target distribution that
     148             : would be uniform from 2 to 7 and then smoothly go to zero from
     149             : 2 to 0 and from 7 to 10.
     150             : 
     151             : ```plumed
     152             : TD_UNIFORM ...
     153             :  MINIMA=2.0
     154             :  MAXIMA=+7.0
     155             :  SIGMA_MINIMA=0.5
     156             :  SIGMA_MAXIMA=1.0
     157             :  LABEL=td
     158             : ... TD_UNIFORM
     159             : ```
     160             : 
     161             : It is also possible to employ a smooth switching function for just one
     162             : of the boundaries as shown here where the target distribution
     163             : would be uniform from 0 to 7 and then smoothly go to zero from 7 to 10.
     164             : 
     165             : ```plumed
     166             : TD_UNIFORM ...
     167             :  MAXIMA=+7.0
     168             :  SIGMA_MAXIMA=1.0
     169             :  LABEL=td
     170             : ... TD_UNIFORM
     171             : ```
     172             : 
     173             : Furthermore, it is possible to employ a sharp boundary by
     174             : using
     175             : 
     176             : ```plumed
     177             : TD_UNIFORM ...
     178             :  MAXIMA=+7.0
     179             :  SIGMA_MAXIMA=0.0
     180             :  LABEL=td
     181             : ... TD_UNIFORM
     182             : ```
     183             : 
     184             : or
     185             : 
     186             : ```plumed
     187             : td: TD_UNIFORM MAXIMA=+7.0
     188             : ```
     189             : 
     190             : 
     191             : */
     192             : //+ENDPLUMEDOC
     193             : 
     194             : class TD_Uniform : public TargetDistribution {
     195             :   std::vector<double> minima_;
     196             :   std::vector<double> maxima_;
     197             :   std::vector<double> sigma_min_;
     198             :   std::vector<double> sigma_max_;
     199             :   double GaussianSwitchingFunc(const double, const double, const double) const;
     200             :   void setupAdditionalGrids(const std::vector<Value*>&, const std::vector<std::string>&, const std::vector<std::string>&, const std::vector<unsigned int>&) override;
     201             : public:
     202             :   static void registerKeywords( Keywords&);
     203             :   explicit TD_Uniform(const ActionOptions& ao);
     204             :   double getValue(const std::vector<double>&) const override;
     205             : };
     206             : 
     207             : 
     208             : PLUMED_REGISTER_ACTION(TD_Uniform,"TD_UNIFORM")
     209             : 
     210             : 
     211          75 : void TD_Uniform::registerKeywords(Keywords& keys) {
     212          75 :   TargetDistribution::registerKeywords(keys);
     213          75 :   keys.add("optional","MINIMA","The minimum of the intervals where the target distribution is taken as uniform. You should give one value for each argument.");
     214          75 :   keys.add("optional","MAXIMA","The maximum of the intervals where the target distribution is taken as uniform. You should give one value for each argument.");
     215          75 :   keys.add("optional","SIGMA_MINIMA","The standard deviation parameters of the Gaussian switching functions for the minima of the intervals. You should give one value for each argument. Value of 0.0 means that switch is done without a smooth switching function, this is the default behavior.");
     216          75 :   keys.add("optional","SIGMA_MAXIMA","The standard deviation parameters of the Gaussian switching functions for the maximum of the intervals. You should give one value for each argument. Value of 0.0 means that switch is done without a smooth switching function, this is the default behavior.");
     217          75 : }
     218             : 
     219             : 
     220          73 : TD_Uniform::TD_Uniform(const ActionOptions& ao):
     221             :   PLUMED_VES_TARGETDISTRIBUTION_INIT(ao),
     222         146 :   minima_(0),
     223          73 :   maxima_(0),
     224          73 :   sigma_min_(0),
     225         146 :   sigma_max_(0) {
     226          73 :   parseVector("MINIMA",minima_);
     227          73 :   parseVector("MAXIMA",maxima_);
     228             : 
     229          73 :   parseVector("SIGMA_MINIMA",sigma_min_);
     230         146 :   parseVector("SIGMA_MAXIMA",sigma_max_);
     231          73 :   if(minima_.size()==0 && sigma_min_.size()>0) {
     232           0 :     plumed_merror(getName()+": you cannot give SIGMA_MINIMA if MINIMA is not given");
     233             :   }
     234          73 :   if(maxima_.size()==0 && sigma_max_.size()>0) {
     235           0 :     plumed_merror(getName()+": you cannot give SIGMA_MAXIMA if MAXIMA is not given");
     236             :   }
     237             : 
     238          73 :   if(minima_.size()>0 && maxima_.size()>0) {
     239             :     // both MINIMA and MAXIMA given, do all checks
     240          58 :     if(minima_.size()!=maxima_.size()) {
     241           0 :       plumed_merror(getName()+": MINIMA and MAXIMA do not have the same number of values.");
     242             :     }
     243          58 :     setDimension(minima_.size());
     244         122 :     for(unsigned int k=0; k<getDimension(); k++) {
     245          64 :       if(minima_[k]>maxima_[k]) {
     246           0 :         plumed_merror(getName()+": error in MINIMA and MAXIMA keywords, one of the MINIMA values is larger than the corresponding MAXIMA values");
     247             :       }
     248             :     }
     249          15 :   } else if(minima_.size()>0 && maxima_.size()==0) {
     250             :     // only MINIMA given, MAXIMA assigned later on.
     251           1 :     setDimension(minima_.size());
     252          14 :   } else if(maxima_.size()>0 && minima_.size()==0) {
     253             :     // only MAXIMA given, MINIMA assigned later on.
     254           1 :     setDimension(maxima_.size());
     255          13 :   } else if(maxima_.size()==0 && minima_.size()==0) {
     256             :     // neither MAXIMA nor MINIMA givenm, both assigned later on.
     257          13 :     setDimension(0);
     258             :   }
     259             : 
     260          73 :   if(sigma_min_.size()==0) {
     261          65 :     sigma_min_.assign(getDimension(),0.0);
     262             :   }
     263          73 :   if(sigma_max_.size()==0) {
     264          65 :     sigma_max_.assign(getDimension(),0.0);
     265             :   }
     266          73 :   if(sigma_min_.size()!=getDimension()) {
     267           0 :     plumed_merror(getName()+": SIGMA_MINIMA has the wrong number of values");
     268             :   }
     269          73 :   if(sigma_max_.size()!=getDimension()) {
     270           0 :     plumed_merror(getName()+": SIGMA_MAXIMA has the wrong number of values");
     271             :   }
     272             :   //
     273             :   setForcedNormalization();
     274          73 :   checkRead();
     275          73 : }
     276             : 
     277             : 
     278          73 : void TD_Uniform::setupAdditionalGrids(const std::vector<Value*>& arguments, const std::vector<std::string>& min, const std::vector<std::string>& max, const std::vector<unsigned int>& nbins) {
     279             : 
     280          73 :   if(minima_.size()==0) {
     281          14 :     minima_.assign(getDimension(),0.0);
     282          33 :     for(unsigned int k=0; k<getDimension(); k++) {
     283          19 :       Tools::convert(min[k],minima_[k]);
     284             :     }
     285             :   }
     286             : 
     287          73 :   if(maxima_.size()==0) {
     288          14 :     maxima_.assign(getDimension(),0.0);
     289          33 :     for(unsigned int k=0; k<getDimension(); k++) {
     290          19 :       Tools::convert(max[k],maxima_[k]);
     291             :     }
     292             :   }
     293             : 
     294          73 : }
     295             : 
     296             : 
     297      118654 : double TD_Uniform::getValue(const std::vector<double>& argument) const {
     298             :   //
     299             :   double value = 1.0;
     300      338719 :   for(unsigned int k=0; k<getDimension(); k++) {
     301             :     double tmp;
     302      220065 :     if(argument[k] < minima_[k]) {
     303       15379 :       tmp = GaussianSwitchingFunc(argument[k],minima_[k],sigma_min_[k]);
     304      204686 :     } else if(argument[k] > maxima_[k]) {
     305       15566 :       tmp = GaussianSwitchingFunc(argument[k],maxima_[k],sigma_max_[k]);
     306             :     } else {
     307             :       tmp = 1.0;
     308             :     }
     309      220065 :     value *= tmp;
     310             :   }
     311      118654 :   return value;
     312             : }
     313             : 
     314             : inline
     315             : double TD_Uniform::GaussianSwitchingFunc(const double argument, const double center, const double sigma) const {
     316       30945 :   if(sigma>0.0) {
     317       23278 :     double arg=(argument-center)/sigma;
     318       23278 :     return exp(-0.5*arg*arg);
     319             :   } else {
     320             :     return 0.0;
     321             :   }
     322             : }
     323             : 
     324             : 
     325             : 
     326             : 
     327             : 
     328             : 
     329             : }
     330             : }

Generated by: LCOV version 1.16