LCOV - code coverage report
Current view: top level - ves - TD_VonMises.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 79 84 94.0 %
Date: 2025-12-04 11:19:34 Functions: 5 5 100.0 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             :    Copyright (c) 2016-2021 The VES code team
       3             :    (see the PEOPLE-VES file at the root of this folder for a list of names)
       4             : 
       5             :    See http://www.ves-code.org for more information.
       6             : 
       7             :    This file is part of VES code module.
       8             : 
       9             :    The VES code module is free software: you can redistribute it and/or modify
      10             :    it under the terms of the GNU Lesser General Public License as published by
      11             :    the Free Software Foundation, either version 3 of the License, or
      12             :    (at your option) any later version.
      13             : 
      14             :    The VES code module is distributed in the hope that it will be useful,
      15             :    but WITHOUT ANY WARRANTY; without even the implied warranty of
      16             :    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      17             :    GNU Lesser General Public License for more details.
      18             : 
      19             :    You should have received a copy of the GNU Lesser General Public License
      20             :    along with the VES code module.  If not, see <http://www.gnu.org/licenses/>.
      21             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      22             : 
      23             : #include "TargetDistribution.h"
      24             : #include "GridIntegrationWeights.h"
      25             : 
      26             : #include "core/ActionRegister.h"
      27             : #include "tools/Tools.h"
      28             : 
      29             : #include <iostream>
      30             : 
      31             : 
      32             : 
      33             : namespace PLMD {
      34             : namespace ves {
      35             : 
      36             : //+PLUMEDOC VES_TARGETDIST TD_VONMISES
      37             : /*
      38             : Target distribution given by a sum of Von Mises distributions (static).
      39             : 
      40             : Employ a target distribution that is given by a sum where each
      41             : term is a product of one-dimensional
      42             : [Von Mises distributions](https://en.wikipedia.org/wiki/Von_Mises_distribution),
      43             : 
      44             : $$
      45             : p(\mathbf{s}) = \sum_{i} \, w_{i}
      46             : \prod_{k}^{d}
      47             : \frac{\exp\left(\kappa_{k,i} \, \cos (s_{k}-\mu_{k,i}) \right)}
      48             : {2\pi I_{0}(\kappa_{k,i})}
      49             : $$
      50             : 
      51             : where $(\mu_{1,i},\mu_{2,i},\ldots,\mu_{d,i})$
      52             : are the centers of the distributions,
      53             : $(\kappa_{1,i},\kappa_{2,i},\ldots,\kappa_{d,i})$
      54             : are parameters that determine the extend of each distribution,
      55             : and $I_{0}(x)$ is the modified Bessel function of order 0.
      56             : The weights $w_{i}$ are normalized to 1, $\sum_{i}w_{i}=1$.
      57             : 
      58             : The Von Mises distribution is defined for periodic variables with a
      59             : periodicity of $2\pi$ and is analogous to the Gaussian distribution.
      60             : The parameter $ \sqrt{1/\kappa}$ is comparable to the standard deviation
      61             : $\sigma$ for the Gaussian distribution.
      62             : 
      63             : To use this target distribution you need to give the centers
      64             : $(\mu_{1,i},\mu_{2,i},\ldots,\mu_{d,i})$ by
      65             : using the numbered CENTER keywords and the "standard deviations"
      66             : $(\sqrt{1/\kappa_{1,i}},\sqrt{1/\kappa_{2,i}},\ldots,\sqrt{1/\kappa_{d,i}})$ using the numbered SIGMA keywords.
      67             : 
      68             : ## Examples
      69             : 
      70             : Sum of two Von Mises distribution in one dimension that have equal weights
      71             : as no weights are given.
      72             : 
      73             : ```plumed
      74             : TD_VONMISES ...
      75             :  CENTER1=+2.0 SIGMA1=0.6
      76             :  CENTER2=-2.0 SIGMA2=0.7
      77             :  LABEL=td
      78             : ... TD_VONMISES
      79             : ```
      80             : 
      81             : Sum of two Von Mises distribution in two dimensions that have different weights.
      82             : Note that the weights are automatically normalized to 1 such that
      83             : specifying WEIGHTS=1.0,2.0 is equal to specifying WEIGHTS=0.33333,0.66667.
      84             : 
      85             : ```plumed
      86             : TD_VONMISES ...
      87             :  CENTER1=+2.0,+2.0 SIGMA1=0.6,0.7
      88             :  CENTER2=-2.0,+2.0 SIGMA2=0.7,0.6
      89             :  WEIGHTS=1.0,2.0
      90             :  LABEL=td
      91             : ... TD_VONMISES
      92             : ```
      93             : 
      94             : */
      95             : //+ENDPLUMEDOC
      96             : 
      97             : class TD_VonMises: public TargetDistribution {
      98             :   // properties of the Gaussians
      99             :   std::vector< std::vector<double> > sigmas_;
     100             :   std::vector< std::vector<double> > kappas_;
     101             :   std::vector< std::vector<double> > centers_;
     102             :   std::vector< std::vector<double> > normalization_;
     103             :   std::vector<double> weights_;
     104             :   std::vector<double> periods_;
     105             :   unsigned int ncenters_;
     106             :   double VonMisesDiagonal(const std::vector<double>&, const std::vector<double>&, const std::vector<double>&, const std::vector<double>&, const std::vector<double>&) const;
     107             :   double getNormalization(const double, const double) const;
     108             : public:
     109             :   static void registerKeywords(Keywords&);
     110             :   explicit TD_VonMises(const ActionOptions& ao);
     111             :   double getValue(const std::vector<double>&) const override;
     112             : };
     113             : 
     114             : 
     115             : PLUMED_REGISTER_ACTION(TD_VonMises,"TD_VONMISES")
     116             : 
     117             : 
     118          11 : void TD_VonMises::registerKeywords(Keywords& keys) {
     119          11 :   TargetDistribution::registerKeywords(keys);
     120          11 :   keys.add("numbered","CENTER","The centers of the Von Mises distributions.");
     121          11 :   keys.add("numbered","SIGMA","The standard deviations of the Von Mises distributions.");
     122          11 :   keys.add("optional","WEIGHTS","The weights of the Von Mises distributions. Have to be as many as the number of centers given with the numbered CENTER keywords. If no weights are given the distributions are weighted equally. The weights are automatically normalized to 1.");
     123          11 :   keys.add("hidden","PERIODS","The periods for each of the dimensions. By default they are 2*pi for each dimension.");
     124          11 :   keys.use("WELLTEMPERED_FACTOR");
     125          11 :   keys.use("SHIFT_TO_ZERO");
     126             :   //keys.use("NORMALIZE");
     127          11 : }
     128             : 
     129             : 
     130           9 : TD_VonMises::TD_VonMises(const ActionOptions& ao):
     131             :   PLUMED_VES_TARGETDISTRIBUTION_INIT(ao),
     132          18 :   sigmas_(0),
     133           9 :   centers_(0),
     134           9 :   normalization_(0),
     135           9 :   weights_(0),
     136           9 :   periods_(0),
     137          18 :   ncenters_(0) {
     138          13 :   for(unsigned int i=1;; i++) {
     139             :     std::vector<double> tmp_center;
     140          44 :     if(!parseNumberedVector("CENTER",i,tmp_center) ) {
     141             :       break;
     142             :     }
     143          13 :     centers_.push_back(tmp_center);
     144          13 :   }
     145          13 :   for(unsigned int i=1;; i++) {
     146             :     std::vector<double> tmp_sigma;
     147          44 :     if(!parseNumberedVector("SIGMA",i,tmp_sigma) ) {
     148             :       break;
     149             :     }
     150          13 :     sigmas_.push_back(tmp_sigma);
     151          13 :   }
     152             :   //
     153           9 :   plumed_massert(centers_.size()==sigmas_.size(),"there has to be an equal amount of CENTER and SIGMA keywords");
     154           9 :   if(centers_.size()==0) {
     155           0 :     plumed_merror(getName()+": CENTER and SIGMA keywords seem to be missing. Note that numbered keywords start at CENTER1 and SIGMA1.");
     156             :   }
     157             :   //
     158           9 :   setDimension(centers_[0].size());
     159           9 :   ncenters_ = centers_.size();
     160             :   //
     161             :   // check centers and sigmas
     162          22 :   for(unsigned int i=0; i<ncenters_; i++) {
     163          13 :     if(centers_[i].size()!=getDimension()) {
     164           0 :       plumed_merror(getName()+": one of the CENTER keyword does not match the given dimension");
     165             :     }
     166          13 :     if(sigmas_[i].size()!=getDimension()) {
     167           0 :       plumed_merror(getName()+": one of the SIGMA keyword does not match the given dimension");
     168             :     }
     169             :   }
     170             :   //
     171           9 :   kappas_.resize(sigmas_.size());
     172          22 :   for(unsigned int i=0; i<sigmas_.size(); i++) {
     173          13 :     kappas_[i].resize(sigmas_[i].size());
     174          32 :     for(unsigned int k=0; k<kappas_[i].size(); k++) {
     175          19 :       kappas_[i][k] = 1.0/(sigmas_[i][k]*sigmas_[i][k]);
     176             :     }
     177             :   }
     178             :   //
     179          18 :   parseVector("WEIGHTS",weights_);
     180           9 :   if(weights_.size()==0) {
     181           9 :     weights_.assign(centers_.size(),1.0);
     182             :   }
     183           9 :   if(centers_.size()!=weights_.size()) {
     184           0 :     plumed_merror(getName() + ": there has to be as many weights given in WEIGHTS as numbered CENTER keywords");
     185             :   }
     186             :   //
     187           9 :   if(periods_.size()==0) {
     188           9 :     periods_.assign(getDimension(),2*pi);
     189             :   }
     190          18 :   parseVector("PERIODS",periods_);
     191           9 :   if(periods_.size()!=getDimension()) {
     192           0 :     plumed_merror(getName() + ": the number of values given in PERIODS does not match the dimension of the distribution");
     193             :   }
     194             :   //
     195             :   double sum_weights=0.0;
     196          22 :   for(unsigned int i=0; i<weights_.size(); i++) {
     197          13 :     sum_weights+=weights_[i];
     198             :   }
     199          22 :   for(unsigned int i=0; i<weights_.size(); i++) {
     200          13 :     weights_[i]/=sum_weights;
     201             :   }
     202             :   //
     203           9 :   normalization_.resize(ncenters_);
     204          22 :   for(unsigned int i=0; i<ncenters_; i++) {
     205          13 :     normalization_[i].resize(getDimension());
     206          32 :     for(unsigned int k=0; k<getDimension(); k++) {
     207          19 :       normalization_[i][k] = getNormalization(kappas_[i][k],periods_[k]);
     208             :     }
     209             :   }
     210           9 :   checkRead();
     211           9 : }
     212             : 
     213             : 
     214       31100 : double TD_VonMises::getValue(const std::vector<double>& argument) const {
     215             :   double value=0.0;
     216       92400 :   for(unsigned int i=0; i<ncenters_; i++) {
     217       61300 :     value+=weights_[i]*VonMisesDiagonal(argument, centers_[i], kappas_[i],periods_,normalization_[i]);
     218             :   }
     219       31100 :   return value;
     220             : }
     221             : 
     222             : 
     223       80319 : double TD_VonMises::VonMisesDiagonal(const std::vector<double>& argument, const std::vector<double>& center, const std::vector<double>& kappa, const std::vector<double>& periods, const std::vector<double>& normalization) const {
     224             :   double value = 1.0;
     225      220638 :   for(unsigned int k=0; k<argument.size(); k++) {
     226      140319 :     double arg = kappa[k]*cos( ((2*pi)/periods[k])*(argument[k]-center[k]) );
     227      140319 :     value*=normalization[k]*exp(arg);
     228             :   }
     229       80319 :   return value;
     230             : }
     231             : 
     232             : 
     233          19 : double TD_VonMises::getNormalization(const double kappa, const double period) const {
     234             :   //
     235          19 :   std::vector<double> centers(1);
     236          19 :   centers[0] = 0.0;
     237          19 :   std::vector<double> kappas(1);
     238          19 :   kappas[0] = kappa;
     239          19 :   std::vector<double> periods(1);
     240          19 :   periods[0] = period;
     241          19 :   std::vector<double> norm(1);
     242          19 :   norm[0] = 1.0;
     243             :   //
     244             :   const unsigned int nbins = 1001;
     245             :   std::vector<double> points;
     246             :   std::vector<double> weights;
     247             :   double min = 0.0;
     248             :   double max = period;
     249          19 :   GridIntegrationWeights::getOneDimensionalIntegrationPointsAndWeights(points,weights,nbins,min,max);
     250             :   //
     251             :   double sum = 0.0;
     252       19038 :   for(unsigned int l=0; l<nbins; l++) {
     253       19019 :     std::vector<double> arg(1);
     254       19019 :     arg[0]= points[l];
     255       19019 :     sum += weights[l] * VonMisesDiagonal(arg,centers,kappas,periods,norm);
     256             :   }
     257          38 :   return 1.0/sum;
     258             : }
     259             : 
     260             : 
     261             : }
     262             : }

Generated by: LCOV version 1.16