Line data Source code
1 : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 2 : Copyright (c) 2016-2021 The VES code team 3 : (see the PEOPLE-VES file at the root of this folder for a list of names) 4 : 5 : See http://www.ves-code.org for more information. 6 : 7 : This file is part of VES code module. 8 : 9 : The VES code module is free software: you can redistribute it and/or modify 10 : it under the terms of the GNU Lesser General Public License as published by 11 : the Free Software Foundation, either version 3 of the License, or 12 : (at your option) any later version. 13 : 14 : The VES code module is distributed in the hope that it will be useful, 15 : but WITHOUT ANY WARRANTY; without even the implied warranty of 16 : MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 : GNU Lesser General Public License for more details. 18 : 19 : You should have received a copy of the GNU Lesser General Public License 20 : along with the VES code module. If not, see <http://www.gnu.org/licenses/>. 21 : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */ 22 : 23 : #include "TargetDistribution.h" 24 : #include "GridIntegrationWeights.h" 25 : 26 : #include "core/ActionRegister.h" 27 : #include "tools/Grid.h" 28 : #include "core/PlumedMain.h" 29 : 30 : 31 : 32 : namespace PLMD { 33 : namespace ves { 34 : 35 : //+PLUMEDOC VES_TARGETDIST TD_WELLTEMPERED 36 : /* 37 : Well-tempered target distribution (dynamic). 38 : 39 : Use as a target distribution the well-tempered distribution discussed in the first paper cited below, 40 : which is given by 41 : 42 : $$ 43 : p(\mathbf{s}) = 44 : \frac{e^{-(\beta/\gamma) F(\mathbf{s})}} 45 : {\int d\mathbf{s}\, e^{-(\beta/\gamma) F(\mathbf{s})}} = 46 : \frac{[P_{0}(\mathbf{s})]^{1/\gamma}} 47 : {\int d\mathbf{s}\, [P_{0}(\mathbf{s})]^{1/\gamma}} 48 : $$ 49 : 50 : where $\gamma$ is a so-called bias factor and $P_{0}(\mathbf{s})$ is the 51 : unbiased canonical distribution of the CVs. This target distribution thus 52 : corresponds to a biased ensemble where, as compared to the unbiased one, 53 : the probability peaks have been broaden and the fluctuations of the CVs are 54 : enhanced. 55 : The value of the bias factor $\gamma$ determines by how much the fluctuations 56 : are enhanced. 57 : 58 : The well-tempered distribution can be view as sampling on 59 : an effective free energy surface $\tilde{F}(\mathbf{s}) = (1/\gamma) F(\mathbf{s})$ 60 : which has largely the same metastable states as the original $F(\mathbf{s})$ 61 : but with barriers that have been reduced by a factor of $\gamma$. 62 : Generally one should use a value of $\gamma$ that results in 63 : effective barriers on the order of few $k_{\mathrm{B}}T$ 64 : such that thermal fluctuations can easily induce transitions 65 : between different metastable states. 66 : 67 : At convergence the relationship between the bias potential and the free 68 : energy surface is given by 69 : 70 : $$ 71 : F(\mathbf{s}) = - \left(\frac{1}{1-\gamma^{-1}} \right) V(\mathbf{s}) 72 : $$ 73 : 74 : This target distribution depends directly on the free energy surface 75 : $F(\mathbf{s})$ which is quantity that we do not know a-priori and 76 : want to obtain. Therefore, this target distribution 77 : is iteratively updated according to 78 : 79 : $$ 80 : p^{(m+1)}(\mathbf{s}) = 81 : \frac{e^{-(\beta/\gamma) F^{(m+1)}(\mathbf{s})}} 82 : {\int d\mathbf{s}\, e^{-(\beta/\gamma) F^{(m+1)}(\mathbf{s})}} 83 : $$ 84 : 85 : where $F^{(m+1)}(\mathbf{s})$ is the current best estimate of the 86 : free energy surface obtained according to 87 : 88 : $$ 89 : F^{(m+1)}(\mathbf{s}) = 90 : - V^{(m+1)}(\mathbf{s}) - \frac{1}{\beta} \log p^{(m)}(\mathbf{s}) = 91 : - V^{(m+1)}(\mathbf{s}) + \frac{1}{\gamma} F^{(m)}(\mathbf{s}) 92 : $$ 93 : 94 : The frequency of performing this update needs to be set in the 95 : optimizer used in the calculation. Normally it is sufficient 96 : to do it every 100-1000 bias update iterations. 97 : 98 : ## Examples 99 : 100 : Employ a well-tempered target distribution with a bias factor of 10 101 : 102 : ```plumed 103 : td_welltemp: TD_WELLTEMPERED BIASFACTOR=10 104 : ``` 105 : 106 : */ 107 : //+ENDPLUMEDOC 108 : 109 : class TD_WellTempered: public TargetDistribution { 110 : private: 111 : double bias_factor_; 112 : public: 113 : static void registerKeywords(Keywords&); 114 : explicit TD_WellTempered(const ActionOptions& ao); 115 : void updateGrid() override; 116 : double getValue(const std::vector<double>&) const override; 117 29 : ~TD_WellTempered() {} 118 : }; 119 : 120 : 121 : PLUMED_REGISTER_ACTION(TD_WellTempered,"TD_WELLTEMPERED") 122 : 123 : 124 31 : void TD_WellTempered::registerKeywords(Keywords& keys) { 125 31 : TargetDistribution::registerKeywords(keys); 126 31 : keys.add("compulsory","BIASFACTOR","The bias factor used for the well-tempered distribution."); 127 31 : keys.addDOI("10.1103/PhysRevLett.100.020603"); 128 31 : keys.addDOI("10.1021/acs.jctc.5b00076"); 129 31 : } 130 : 131 : 132 29 : TD_WellTempered::TD_WellTempered(const ActionOptions& ao): 133 : PLUMED_VES_TARGETDISTRIBUTION_INIT(ao), 134 29 : bias_factor_(0.0) { 135 29 : log.printf(" Well-tempered target distribution, see and cite "); 136 58 : log << plumed.cite("Valsson and Parrinello, J. Chem. Theory Comput. 11, 1996-2002 (2015)"); 137 58 : log << plumed.cite("Barducci, Bussi, and Parrinello, Phys. Rev. Lett. 100, 020603 (2008)"); 138 29 : log.printf("\n"); 139 29 : parse("BIASFACTOR",bias_factor_); 140 29 : if(bias_factor_<=1.0) { 141 0 : plumed_merror("TD_WELLTEMPERED target distribution: the value of the bias factor doesn't make sense, it should be larger than 1.0"); 142 : } 143 : setDynamic(); 144 : setFesGridNeeded(); 145 29 : checkRead(); 146 29 : } 147 : 148 : 149 0 : double TD_WellTempered::getValue(const std::vector<double>& argument) const { 150 0 : plumed_merror("getValue not implemented for TD_WellTempered"); 151 : return 0.0; 152 : } 153 : 154 : 155 319 : void TD_WellTempered::updateGrid() { 156 319 : double beta_prime = getBeta()/bias_factor_; 157 319 : plumed_massert(getFesGridPntr()!=NULL,"the FES grid has to be linked to use TD_WellTempered!"); 158 638 : std::vector<double> integration_weights = GridIntegrationWeights::getIntegrationWeights(getTargetDistGridPntr()); 159 : double norm = 0.0; 160 1127896 : for(Grid::index_t l=0; l<targetDistGrid().getSize(); l++) { 161 1127577 : double value = beta_prime * getFesGridPntr()->getValue(l); 162 1127577 : logTargetDistGrid().setValue(l,value); 163 1127577 : value = exp(-value); 164 1127577 : norm += integration_weights[l]*value; 165 1127577 : targetDistGrid().setValue(l,value); 166 : } 167 319 : targetDistGrid().scaleAllValuesAndDerivatives(1.0/norm); 168 319 : logTargetDistGrid().setMinToZero(); 169 319 : } 170 : 171 : 172 : } 173 : }