LCOV - code coverage report
Current view: top level - ves - VesDeltaF.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 344 352 97.7 %
Date: 2025-12-04 11:19:34 Functions: 7 8 87.5 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             :    Copyright (c) 2016-2021 The VES code team
       3             :    (see the PEOPLE-VES file at the root of this folder for a list of names)
       4             : 
       5             :    See http://www.ves-code.org for more information.
       6             : 
       7             :    This file is part of VES code module.
       8             : 
       9             :    The VES code module is free software: you can redistribute it and/or modify
      10             :    it under the terms of the GNU Lesser General Public License as published by
      11             :    the Free Software Foundation, either version 3 of the License, or
      12             :    (at your option) any later version.
      13             : 
      14             :    The VES code module is distributed in the hope that it will be useful,
      15             :    but WITHOUT ANY WARRANTY; without even the implied warranty of
      16             :    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      17             :    GNU Lesser General Public License for more details.
      18             : 
      19             :    You should have received a copy of the GNU Lesser General Public License
      20             :    along with the VES code module.  If not, see <http://www.gnu.org/licenses/>.
      21             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      22             : 
      23             : #include "bias/Bias.h"
      24             : #include "core/PlumedMain.h"
      25             : #include "core/ActionRegister.h"
      26             : #include "tools/Communicator.h"
      27             : #include "tools/Grid.h"
      28             : #include "tools/File.h"
      29             : //#include <algorithm> //std::fill
      30             : 
      31             : namespace PLMD {
      32             : namespace ves {
      33             : 
      34             : //+PLUMEDOC VES_BIAS VES_DELTA_F
      35             : /*
      36             : Implementation of VES Delta F method
      37             : 
      38             : Implementation of VES$\Delta F$ method discussed in the paper cited below (step two only).
      39             : 
      40             : !!! warning ""
      41             : 
      42             :     Notice that this is a stand-alone bias Action, it does not need any of the other VES module components
      43             : 
      44             : First you should create some estimate of the local free energy basins of your system,
      45             : using e.g. multiple [METAD](METAD.md) short runs, and combining them with the [sum_hills](sum_hills.md) utility.
      46             : Once you have them, you can use this bias Action to perform the VES optimization part of the method.
      47             : 
      48             : These $N+1$ local basins are used to model the global free energy.
      49             : In particular, given the conditional probabilities $P(\mathbf{s}|i)\propto e^{-\beta F_i(\mathbf{s})}$
      50             : and the probabilities of being in a given basin $P_i$, we can write:
      51             : 
      52             : $$
      53             :   e^{-\beta F(\mathbf{s})}\propto P(\mathbf{s})=\sum_{i=0}^N P(\mathbf{s}|i)P_i \, .
      54             : $$
      55             : 
      56             : We use this free energy model and the chosen bias factor $\gamma$ to build the bias potential:
      57             : $V(\mathbf{s})=-(1-1/\gamma)F(\mathbf{s})$.
      58             : Or, more explicitly:
      59             : $$
      60             :   V(\mathbf{s})=(1-1/\gamma)\frac{1}{\beta}\log\left[e^{-\beta F_0(\mathbf{s})}
      61             :   +\sum_{i=1}^{N} e^{-\beta F_i(\mathbf{s})} e^{-\beta \alpha_i}\right] \, ,
      62             : $$
      63             : where the parameters $\boldsymbol{\alpha}$ are the $N$ free energy differences (see below) from the $F_0$ basin.
      64             : 
      65             : By default the $F_i(\mathbf{s})$ are shifted so that $\min[F_i(\mathbf{s})]=0$ for all $i=\{0,...,N\}$.
      66             : In this case the optimization parameters $\alpha_i$ are the difference in height between the minima of the basins.
      67             : Using the keyword `NORMALIZE`, you can also decide to normalize the local free energies so that
      68             : $\int d\mathbf{s}\, e^{-\beta F_i(\mathbf{s})}=1$.
      69             : In this case the parameters will represent not the difference in height (which depends on the chosen CVs),
      70             : but the actual free energy difference, $\alpha_i=\Delta F_i$.
      71             : 
      72             : However, as discussed in the paper cited below, a better estimate of $\Delta F_i$ should be obtained through the reweighting procedure.
      73             : 
      74             : ## Examples
      75             : 
      76             : The following performs the optimization of the free energy difference between two metastable basins:
      77             : 
      78             : ```plumed
      79             : #SETTINGS INPUTFILES=regtest/ves/rt-VesDeltaF/fesA.data,regtest/ves/rt-VesDeltaF/fesB.data
      80             : 
      81             : cv: TORSION ATOMS=7,9,15,17
      82             : 
      83             : ves: VES_DELTA_F ...
      84             :   ARG=cv
      85             :   TEMP=300
      86             :   FILE_F0=regtest/ves/rt-VesDeltaF/fesA.data
      87             :   FILE_F1=regtest/ves/rt-VesDeltaF/fesB.data
      88             :   BIASFACTOR=10.0
      89             :   M_STEP=0.1
      90             :   AV_STRIDE=500
      91             :   PRINT_STRIDE=100
      92             : ...
      93             : PRINT FMT=%g STRIDE=500 FILE=Colvar.data ARG=cv,ves.bias,ves.rct
      94             : ```
      95             : 
      96             : The local FES files can be obtained as described in Sec. 4.2 of the paper cited below, i.e. for example:
      97             : - run 4 independent metad runs, all starting from basin A, and kill them as soon as they make the first transition (see e.g. [COMMITTOR](COMMITTOR.md))
      98             : - `cat HILLS* > all_HILLS`
      99             : - `plumed sum_hills --hills all_HILLS --outfile all_fesA.dat --mintozero --min 0 --max 1 --bin 100`
     100             : - `awk -v n_rep=4 '{if($1!="#!" && $1!="") {for(i=1+(NF-1)/2; i<=NF; i++) $i/=n_rep;} print $0}' all_fesA.dat > fesA.data`
     101             : 
     102             : */
     103             : //+ENDPLUMEDOC
     104             : 
     105             : class VesDeltaF : public bias::Bias {
     106             : 
     107             : private:
     108             :   double beta_;
     109             :   unsigned NumParallel_;
     110             :   unsigned rank_;
     111             :   unsigned NumWalkers_;
     112             :   bool isFirstStep_;
     113             :   bool afterCalculate_;
     114             : 
     115             : //prob
     116             :   double tot_prob_;
     117             :   std::vector<double> prob_;
     118             :   std::vector< std::vector<double> > der_prob_;
     119             : 
     120             : //local basins
     121             :   std::vector< std::unique_ptr<Grid> > grid_p_; //pointers because of GridBase::create
     122             :   std::vector<double> norm_;
     123             : 
     124             : //optimizer-related stuff
     125             :   long long unsigned mean_counter_;
     126             :   unsigned mean_weight_tau_;
     127             :   unsigned alpha_size_;
     128             :   unsigned sym_alpha_size_;
     129             :   std::vector<double> mean_alpha_;
     130             :   std::vector<double> inst_alpha_;
     131             :   std::vector<double> past_increment2_;
     132             :   double minimization_step_;
     133             :   bool damping_off_;
     134             : //'tg' -> 'target distribution'
     135             :   double inv_gamma_;
     136             :   unsigned tg_counter_;
     137             :   unsigned tg_stride_;
     138             :   std::vector<double> tg_dV_dAlpha_;
     139             :   std::vector<double> tg_d2V_dAlpha2_;
     140             : //'av' -> 'ensemble average'
     141             :   unsigned av_counter_;
     142             :   unsigned av_stride_;
     143             :   std::vector<double> av_dV_dAlpha_;
     144             :   std::vector<double> av_dV_dAlpha_prod_;
     145             :   std::vector<double> av_d2V_dAlpha2_;
     146             : //printing
     147             :   unsigned print_stride_;
     148             :   OFile alphaOfile_;
     149             : //other
     150             :   std::vector<double> exp_alpha_;
     151             :   std::vector<double> prev_exp_alpha_;
     152             :   double work_;
     153             : 
     154             : //functions
     155             :   void update_alpha();
     156             :   void update_tg_and_rct();
     157             :   inline unsigned get_index(const unsigned, const unsigned) const;
     158             : 
     159             : public:
     160             :   explicit VesDeltaF(const ActionOptions&);
     161             :   void calculate() override;
     162             :   void update() override;
     163             :   static void registerKeywords(Keywords& keys);
     164             : };
     165             : 
     166             : PLUMED_REGISTER_ACTION(VesDeltaF,"VES_DELTA_F")
     167             : 
     168           6 : void VesDeltaF::registerKeywords(Keywords& keys) {
     169           6 :   Bias::registerKeywords(keys);
     170           6 :   keys.add("optional","TEMP","temperature is compulsory, but it can be sometimes fetched from the MD engine");
     171             : //local free energies
     172           6 :   keys.add("numbered","FILE_F","names of files containing local free energies and derivatives. "
     173             :            "The first one, FILE_F0, is used as reference for all the free energy differences.");
     174          12 :   keys.reset_style("FILE_F","compulsory");
     175           6 :   keys.addFlag("NORMALIZE",false,"normalize all local free energies so that alpha will be (approx) Delta F");
     176           6 :   keys.addFlag("NO_MINTOZERO",false,"leave local free energies as provided, without shifting them to zero min");
     177             : //target distribution
     178           6 :   keys.add("compulsory","BIASFACTOR","0","the gamma bias factor used for well-tempered target p(s)."
     179             :            " Set to 0 for non-tempered flat target");
     180           6 :   keys.add("optional","TG_STRIDE","( default=1 ) number of AV_STRIDE between updates"
     181             :            " of target p(s) and reweighing factor c(t)");
     182             : //optimization
     183           6 :   keys.add("compulsory","M_STEP","1.0","the mu step used for the Omega functional minimization");
     184           6 :   keys.add("compulsory","AV_STRIDE","500","number of simulation steps between alpha updates");
     185           6 :   keys.add("optional","TAU_MEAN","exponentially decaying average for alpha (rescaled using AV_STRIDE)."
     186             :            " Should be used only in very specific cases");
     187           6 :   keys.add("optional","INITIAL_ALPHA","( default=0 ) an initial guess for the bias potential parameter alpha");
     188           6 :   keys.addFlag("DAMPING_OFF",false,"do not use an AdaGrad-like term to rescale M_STEP");
     189             : //output parameters file
     190           6 :   keys.add("compulsory","ALPHA_FILE","ALPHA","file name for output minimization parameters");
     191           6 :   keys.add("optional","PRINT_STRIDE","( default=10 ) stride for printing to ALPHA_FILE");
     192           6 :   keys.add("optional","FMT","specify format for ALPHA_FILE");
     193             : //debug flags
     194           6 :   keys.addFlag("SERIAL",false,"perform the calculation in serial even if multiple tasks are available");
     195           6 :   keys.addFlag("MULTIPLE_WALKERS",false,"use multiple walkers connected via MPI for the optimization");
     196           6 :   keys.use("RESTART");
     197             : 
     198             : //output components
     199          12 :   keys.addOutputComponent("rct","default","scalar","the reweighting factor c(t)");
     200          12 :   keys.addOutputComponent("work","default","scalar","the work done by the bias in one AV_STRIDE");
     201           6 :   keys.addDOI("10.1021/acs.jctc.9b00032");
     202           6 : }
     203             : 
     204           4 : VesDeltaF::VesDeltaF(const ActionOptions&ao)
     205             :   : PLUMED_BIAS_INIT(ao)
     206           4 :   , isFirstStep_(true)
     207           4 :   , afterCalculate_(false)
     208           4 :   , mean_counter_(0)
     209           4 :   , av_counter_(0)
     210           4 :   , work_(0) {
     211             : //set beta
     212           4 :   const double Kb=getKBoltzmann();
     213           4 :   double KbT=getkBT();
     214           4 :   plumed_massert(KbT>0,"your MD engine does not pass the temperature to plumed, you must specify it using TEMP");
     215           4 :   beta_=1.0/KbT;
     216             : 
     217             : //initialize probability grids using local free energies
     218             :   bool spline=true;
     219             :   bool sparsegrid=false;
     220           4 :   std::string funcl="file.free"; //typical name given by sum_hills
     221             : 
     222             :   std::vector<std::string> fes_names;
     223           8 :   for(unsigned n=0;; n++) { //NB: here we start from FILE_F0 not from FILE_F1
     224             :     std::string filename;
     225          24 :     if(!parseNumbered("FILE_F",n,filename)) {
     226             :       break;
     227             :     }
     228           8 :     fes_names.push_back(filename);
     229           8 :     IFile gridfile;
     230           8 :     gridfile.open(filename);
     231           8 :     auto g=GridBase::create(funcl,getArguments(),gridfile,sparsegrid,spline,true);
     232             : // we assume this cannot be sparse. in case we want it to be sparse, some of the methods
     233             : // that are available only in Grid should be ported to GridBase
     234           8 :     auto gg=dynamic_cast<Grid*>(g.get());
     235             : // if this throws, g is deleted
     236           8 :     plumed_assert(gg);
     237             : // release ownership in order to transfer it to emplaced pointer
     238             : // cppcheck-suppress ignoredReturnValue
     239             :     g.release();
     240           8 :     grid_p_.emplace_back(gg);
     241          16 :   }
     242           4 :   plumed_massert(grid_p_.size()>1,"at least 2 basins must be defined, starting from FILE_F0");
     243           4 :   alpha_size_=grid_p_.size()-1;
     244           4 :   sym_alpha_size_=alpha_size_*(alpha_size_+1)/2; //useful for symmetric matrix [alpha_size_]x[alpha_size_]
     245             :   //check for consistency with first local free energy
     246           8 :   for(unsigned n=1; n<grid_p_.size(); n++) {
     247           8 :     std::string error_tag="FILE_F"+std::to_string(n)+" '"+fes_names[n]+"' not compatible with reference one, FILE_F0";
     248           4 :     plumed_massert(grid_p_[n]->getSize()==grid_p_[0]->getSize(),error_tag);
     249           4 :     plumed_massert(grid_p_[n]->getMin()==grid_p_[0]->getMin(),error_tag);
     250           4 :     plumed_massert(grid_p_[n]->getMax()==grid_p_[0]->getMax(),error_tag);
     251           4 :     plumed_massert(grid_p_[n]->getBinVolume()==grid_p_[0]->getBinVolume(),error_tag);
     252             :   }
     253             : 
     254           4 :   bool no_mintozero=false;
     255           4 :   parseFlag("NO_MINTOZERO",no_mintozero);
     256           4 :   if(!no_mintozero) {
     257           6 :     for(unsigned n=0; n<grid_p_.size(); n++) {
     258           4 :       grid_p_[n]->setMinToZero();
     259             :     }
     260             :   }
     261           4 :   bool normalize=false;
     262           4 :   parseFlag("NORMALIZE",normalize);
     263           4 :   norm_.resize(grid_p_.size(),0);
     264           4 :   std::vector<double> c_norm(grid_p_.size());
     265             :   //convert the FESs to probability distributions
     266             :   //NB: the spline interpolation will be done on the probability distributions, not on the given FESs
     267             :   const unsigned ncv=getNumberOfArguments(); //just for ease
     268          12 :   for(unsigned n=0; n<grid_p_.size(); n++) {
     269         808 :     for(Grid::index_t t=0; t<grid_p_[n]->getSize(); t++) {
     270         800 :       std::vector<double> der(ncv);
     271         800 :       const double val=std::exp(-beta_*grid_p_[n]->getValueAndDerivatives(t,der));
     272        1600 :       for(unsigned s=0; s<ncv; s++) {
     273         800 :         der[s]*=-beta_*val;
     274             :       }
     275         800 :       grid_p_[n]->setValueAndDerivatives(t,val,der);
     276         800 :       norm_[n]+=val;
     277             :     }
     278           8 :     c_norm[n]=1./beta_*std::log(norm_[n]);
     279           8 :     if(normalize) {
     280           4 :       grid_p_[n]->scaleAllValuesAndDerivatives(1./norm_[n]);
     281           4 :       norm_[n]=1;
     282             :     }
     283             :   }
     284             : 
     285             : //get target
     286           4 :   double biasfactor=0;
     287           4 :   parse("BIASFACTOR",biasfactor);
     288           4 :   plumed_massert(biasfactor==0 || biasfactor>1,"BIASFACTOR must be zero (for uniform target) or greater than one");
     289           4 :   if(biasfactor==0) {
     290           2 :     inv_gamma_=0;
     291             :   } else {
     292           2 :     inv_gamma_=1./biasfactor;
     293             :   }
     294           4 :   tg_counter_=0;
     295           4 :   tg_stride_=1;
     296           4 :   parse("TG_STRIDE",tg_stride_);
     297           4 :   tg_dV_dAlpha_.resize(alpha_size_,0);
     298           4 :   tg_d2V_dAlpha2_.resize(sym_alpha_size_,0);
     299             : 
     300             : //setup optimization stuff
     301           4 :   minimization_step_=1;
     302           4 :   parse("M_STEP",minimization_step_);
     303             : 
     304           4 :   av_stride_=500;
     305           4 :   parse("AV_STRIDE",av_stride_);
     306           4 :   av_dV_dAlpha_.resize(alpha_size_,0);
     307           4 :   av_dV_dAlpha_prod_.resize(sym_alpha_size_,0);
     308           4 :   av_d2V_dAlpha2_.resize(sym_alpha_size_,0);
     309             : 
     310           4 :   mean_weight_tau_=0;
     311           4 :   parse("TAU_MEAN",mean_weight_tau_);
     312           4 :   if(mean_weight_tau_!=1) { //set it to 1 for basic SGD
     313           4 :     plumed_massert((mean_weight_tau_==0 || mean_weight_tau_>av_stride_),"TAU_MEAN is rescaled with AV_STRIDE, so it has to be greater");
     314           4 :     mean_weight_tau_/=av_stride_; //this way you can look at the number of simulation steps to choose TAU_MEAN
     315             :   }
     316             : 
     317           8 :   parseVector("INITIAL_ALPHA",mean_alpha_);
     318           4 :   if(mean_alpha_.size()>0) {
     319           2 :     plumed_massert(mean_alpha_.size()==alpha_size_,"provide one INITIAL_ALPHA for each basin beyond the first one");
     320             :   } else {
     321           2 :     mean_alpha_.resize(alpha_size_,0);
     322             :   }
     323           4 :   inst_alpha_=mean_alpha_;
     324           4 :   exp_alpha_.resize(alpha_size_);
     325           8 :   for(unsigned i=0; i<alpha_size_; i++) {
     326           4 :     exp_alpha_[i]=std::exp(-beta_*mean_alpha_[i]);
     327             :   }
     328           4 :   prev_exp_alpha_=exp_alpha_;
     329             : 
     330           4 :   damping_off_=false;
     331           4 :   parseFlag("DAMPING_OFF",damping_off_);
     332           4 :   if(damping_off_) {
     333           2 :     past_increment2_.resize(alpha_size_,1);
     334             :   } else {
     335           2 :     past_increment2_.resize(alpha_size_,0);
     336             :   }
     337             : 
     338             : //file printing options
     339           4 :   std::string alphaFileName("ALPHA");
     340           4 :   parse("ALPHA_FILE",alphaFileName);
     341           4 :   print_stride_=10;
     342           8 :   parse("PRINT_STRIDE",print_stride_);
     343             :   std::string fmt;
     344           4 :   parse("FMT",fmt);
     345             : 
     346             : //other flags, mainly for debugging
     347           4 :   NumParallel_=comm.Get_size();
     348           4 :   rank_=comm.Get_rank();
     349           4 :   bool serial=false;
     350           4 :   parseFlag("SERIAL",serial);
     351           4 :   if(serial) {
     352           2 :     log.printf(" -- SERIAL: running without loop parallelization\n");
     353           2 :     NumParallel_=1;
     354           2 :     rank_=0;
     355             :   }
     356             : 
     357           4 :   bool multiple_walkers=false;
     358           4 :   parseFlag("MULTIPLE_WALKERS",multiple_walkers);
     359           4 :   if(!multiple_walkers) {
     360           2 :     NumWalkers_=1;
     361             :   } else {
     362           2 :     if(comm.Get_rank()==0) { //multi_sim_comm works well on first rank only
     363           2 :       NumWalkers_=multi_sim_comm.Get_size();
     364             :     }
     365           2 :     if(comm.Get_size()>1) { //if each walker has more than one processor update them all
     366           0 :       comm.Bcast(NumWalkers_,0);
     367             :     }
     368             :   }
     369             : 
     370           4 :   checkRead();
     371             : 
     372             : //restart if needed
     373           4 :   if(getRestart()) {
     374           2 :     IFile ifile;
     375           2 :     ifile.link(*this);
     376           2 :     if(NumWalkers_>1) {
     377           4 :       ifile.enforceSuffix("");
     378             :     }
     379           2 :     if(ifile.FileExist(alphaFileName)) {
     380           2 :       log.printf("  Restarting from: %s\n",alphaFileName.c_str());
     381           2 :       log.printf("    all options (also PRINT_STRIDE) must be consistent!\n");
     382           2 :       log.printf("    any INITIAL_ALPHA will be overwritten\n");
     383           2 :       ifile.open(alphaFileName);
     384             :       double time;
     385           2 :       std::vector<double> damping(alpha_size_);
     386          20 :       while(ifile.scanField("time",time)) { //room for improvements: only last line is important
     387          16 :         for(unsigned i=0; i<alpha_size_; i++) {
     388           8 :           const std::string index(std::to_string(i+1));
     389           8 :           prev_exp_alpha_[i]=std::exp(-beta_*mean_alpha_[i]);
     390          16 :           ifile.scanField("alpha_"+index,mean_alpha_[i]);
     391          16 :           ifile.scanField("auxiliary_"+index,inst_alpha_[i]);
     392          16 :           ifile.scanField("damping_"+index,damping[i]);
     393             :         }
     394           8 :         ifile.scanField();
     395           8 :         mean_counter_+=print_stride_;
     396             :       }
     397           4 :       for(unsigned i=0; i<alpha_size_; i++) {
     398           2 :         exp_alpha_[i]=std::exp(-beta_*mean_alpha_[i]);
     399           2 :         past_increment2_[i]=damping[i]*damping[i];
     400             :       }
     401             :       //sync all walkers and treads. Not sure is mandatory but is no harm
     402           2 :       comm.Barrier();
     403           2 :       if(comm.Get_rank()==0) {
     404           2 :         multi_sim_comm.Barrier();
     405             :       }
     406             :     } else {
     407           0 :       log.printf("  -- WARNING: restart requested, but no '%s' file found!\n",alphaFileName.c_str());
     408             :     }
     409           2 :   }
     410             : 
     411             : //setup output file with Alpha values
     412           4 :   alphaOfile_.link(*this);
     413           4 :   if(NumWalkers_>1) {
     414           2 :     if(comm.Get_rank()==0 && multi_sim_comm.Get_rank()>0) {
     415             :       alphaFileName="/dev/null";  //only first walker writes on file
     416             :     }
     417           4 :     alphaOfile_.enforceSuffix("");
     418             :   }
     419           4 :   alphaOfile_.open(alphaFileName);
     420           4 :   if(fmt.length()>0) {
     421           8 :     alphaOfile_.fmtField(" "+fmt);
     422             :   }
     423             : 
     424             : //add other output components
     425           8 :   addComponent("rct");
     426           8 :   componentIsNotPeriodic("rct");
     427           8 :   addComponent("work");
     428           4 :   componentIsNotPeriodic("work");
     429             : 
     430             : //print some info
     431           4 :   log.printf("  Temperature T: %g\n",1./(Kb*beta_));
     432           4 :   log.printf("  Beta (1/Kb*T): %g\n",beta_);
     433           4 :   log.printf("  Local free energy basins files and normalization constants:\n");
     434          12 :   for(unsigned n=0; n<grid_p_.size(); n++) {
     435           8 :     log.printf("    F_%d filename: %s  c_%d=%g\n",n,fes_names[n].c_str(),n,c_norm[n]);
     436             :   }
     437           4 :   if(no_mintozero) {
     438           2 :     log.printf(" -- NO_MINTOZERO: local free energies are not shifted to be zero at minimum\n");
     439             :   }
     440           4 :   if(normalize) {
     441           2 :     log.printf(" -- NORMALIZE: F_n+=c_n, alpha=DeltaF\n");
     442             :   }
     443           4 :   log.printf("  Using target distribution with 1/gamma = %g\n",inv_gamma_);
     444           4 :   log.printf("    and updated with stride %d\n",tg_stride_);
     445           4 :   log.printf("  Step for the minimization algorithm: %g\n",minimization_step_);
     446           4 :   log.printf("  Stride for the ensemble average: %d\n",av_stride_);
     447           4 :   if(mean_weight_tau_>1) {
     448           2 :     log.printf("  Exponentially decaying average with weight=tau/av_stride=%d\n",mean_weight_tau_);
     449             :   }
     450           4 :   if(mean_weight_tau_==1) {
     451           0 :     log.printf(" +++ WARNING +++ setting TAU_MEAN=1 is equivalent to use simple SGD, without mean alpha nor hessian contribution\n");
     452             :   }
     453           4 :   log.printf("  Initial guess for alpha:\n");
     454           8 :   for(unsigned i=0; i<alpha_size_; i++) {
     455           4 :     log.printf("    alpha_%d = %g\n",i+1,mean_alpha_[i]);
     456             :   }
     457           4 :   if(damping_off_) {
     458           2 :     log.printf(" -- DAMPING_OFF: the minimization step will NOT become smaller as the simulation goes on\n");
     459             :   }
     460           4 :   log.printf("  Printing on file %s with stride %d\n",alphaFileName.c_str(),print_stride_);
     461           4 :   if(serial) {
     462           2 :     log.printf(" -- SERIAL: running without loop parallelization\n");
     463             :   }
     464           4 :   if(NumParallel_>1) {
     465           2 :     log.printf("  Using multiple threads per simulation: %d\n",NumParallel_);
     466             :   }
     467           4 :   if(multiple_walkers) {
     468           2 :     log.printf(" -- MULTIPLE_WALKERS: multiple simulations will combine statistics for the optimization\n");
     469           2 :     if(NumWalkers_>1) {
     470           2 :       log.printf("    number of walkers: %d\n",NumWalkers_);
     471           2 :       log.printf("    walker rank: %d\n",multi_sim_comm.Get_rank()); //only comm.Get_rank()=0 prints, so this is fine
     472             :     } else {
     473           0 :       log.printf(" +++ WARNING +++ only one replica found: are you sure you are running MPI-connected simulations?\n");
     474             :     }
     475             :   }
     476           4 :   log.printf(" Bibliography ");
     477           8 :   log<<plumed.cite("Invernizzi and Parrinello, J. Chem. Theory Comput. 15, 2187-2194 (2019)");
     478           8 :   log<<plumed.cite("Valsson and Parrinello, Phys. Rev. Lett. 113, 090601 (2014)");
     479           4 :   if(inv_gamma_>0) {
     480           4 :     log<<plumed.cite("Valsson and Parrinello, J. Chem. Theory Comput. 11, 1996-2002 (2015)");
     481             :   }
     482             : 
     483             : //last initializations
     484           4 :   prob_.resize(grid_p_.size());
     485           4 :   der_prob_.resize(grid_p_.size(),std::vector<double>(getNumberOfArguments()));
     486           4 :   update_tg_and_rct();
     487           8 : }
     488             : 
     489         804 : void VesDeltaF::calculate() {
     490             : //get CVs
     491         804 :   const unsigned ncv=getNumberOfArguments(); //just for ease
     492         804 :   std::vector<double> cv(ncv);
     493        1608 :   for(unsigned s=0; s<ncv; s++) {
     494         804 :     cv[s]=getArgument(s);
     495             :   }
     496             : //get probabilities for each basin, and total one
     497        2412 :   for(unsigned n=0; n<grid_p_.size(); n++) {
     498        1608 :     prob_[n]=grid_p_[n]->getValueAndDerivatives(cv,der_prob_[n]);
     499             :   }
     500         804 :   tot_prob_=prob_[0];
     501        1608 :   for(unsigned i=0; i<alpha_size_; i++) {
     502         804 :     tot_prob_+=prob_[i+1]*exp_alpha_[i];
     503             :   }
     504             : 
     505             : //update bias and forces: V=-(1-inv_gamma_)*fes
     506         804 :   setBias((1-inv_gamma_)/beta_*std::log(tot_prob_));
     507        1608 :   for(unsigned s=0; s<ncv; s++) {
     508         804 :     double dProb_dCV_s=der_prob_[0][s];
     509        1608 :     for(unsigned i=0; i<alpha_size_; i++) {
     510         804 :       dProb_dCV_s+=der_prob_[i+1][s]*exp_alpha_[i];
     511             :     }
     512         804 :     setOutputForce(s,-(1-inv_gamma_)/beta_/tot_prob_*dProb_dCV_s);
     513             :   }
     514         804 :   afterCalculate_=true;
     515         804 : }
     516             : 
     517         804 : void VesDeltaF::update() {
     518             : //skip first step to sync getTime() and av_counter_, as in METAD
     519         804 :   if(isFirstStep_) {
     520           4 :     isFirstStep_=false;
     521           4 :     return;
     522             :   }
     523         800 :   plumed_massert(afterCalculate_,"VesDeltaF::update() must be called after VesDeltaF::calculate() to work properly");
     524         800 :   afterCalculate_=false;
     525             : 
     526             : //calculate derivatives for ensemble averages
     527         800 :   std::vector<double> dV_dAlpha(alpha_size_);
     528         800 :   std::vector<double> d2V_dAlpha2(sym_alpha_size_);
     529        1600 :   for(unsigned i=0; i<alpha_size_; i++) {
     530         800 :     dV_dAlpha[i]=-(1-inv_gamma_)/tot_prob_*prob_[i+1]*exp_alpha_[i];
     531             :   }
     532        1600 :   for(unsigned i=0; i<alpha_size_; i++) {
     533         800 :     d2V_dAlpha2[get_index(i,i)]=-beta_*dV_dAlpha[i];
     534        1600 :     for(unsigned j=i; j<alpha_size_; j++) {
     535         800 :       d2V_dAlpha2[get_index(i,j)]-=beta_/(1-inv_gamma_)*dV_dAlpha[i]*dV_dAlpha[j];
     536             :     }
     537             :   }
     538             : //update ensemble averages
     539         800 :   av_counter_++;
     540        1600 :   for(unsigned i=0; i<alpha_size_; i++) {
     541         800 :     av_dV_dAlpha_[i]+=(dV_dAlpha[i]-av_dV_dAlpha_[i])/av_counter_;
     542        1600 :     for(unsigned j=i; j<alpha_size_; j++) {
     543         800 :       const unsigned ij=get_index(i,j);
     544         800 :       av_dV_dAlpha_prod_[ij]+=(dV_dAlpha[i]*dV_dAlpha[j]-av_dV_dAlpha_prod_[ij])/av_counter_;
     545         800 :       av_d2V_dAlpha2_[ij]+=(d2V_dAlpha2[ij]-av_d2V_dAlpha2_[ij])/av_counter_;
     546             :     }
     547             :   }
     548             : //update work
     549         800 :   double prev_tot_prob=prob_[0];
     550        1600 :   for(unsigned i=0; i<alpha_size_; i++) {
     551         800 :     prev_tot_prob+=prob_[i+1]*prev_exp_alpha_[i];
     552             :   }
     553         800 :   work_+=(1-inv_gamma_)/beta_*std::log(tot_prob_/prev_tot_prob);
     554             : 
     555             : //update coefficients
     556         800 :   if(av_counter_==av_stride_) {
     557          16 :     update_alpha();
     558          16 :     tg_counter_++;
     559          16 :     if(tg_counter_==tg_stride_) {
     560          12 :       update_tg_and_rct();
     561          12 :       tg_counter_=0;
     562             :     }
     563             :     //reset the ensemble averages
     564          16 :     av_counter_=0;
     565             :     std::fill(av_dV_dAlpha_.begin(),av_dV_dAlpha_.end(),0);
     566             :     std::fill(av_dV_dAlpha_prod_.begin(),av_dV_dAlpha_prod_.end(),0);
     567             :     std::fill(av_d2V_dAlpha2_.begin(),av_d2V_dAlpha2_.end(),0);
     568             :   }
     569             : }
     570             : 
     571          16 : void VesDeltaF::update_tg_and_rct() {
     572             : //calculate target averages
     573          16 :   double Z_0=norm_[0];
     574          32 :   for(unsigned i=0; i<alpha_size_; i++) {
     575          16 :     Z_0+=norm_[i+1]*exp_alpha_[i];
     576             :   }
     577          16 :   double Z_tg=0;
     578             :   std::fill(tg_dV_dAlpha_.begin(),tg_dV_dAlpha_.end(),0);
     579             :   std::fill(tg_d2V_dAlpha2_.begin(),tg_d2V_dAlpha2_.end(),0);
     580        1116 :   for(Grid::index_t t=rank_; t<grid_p_[0]->getSize(); t+=NumParallel_) {
     581             :     //TODO can we recycle some code?
     582        1100 :     std::vector<double> prob(grid_p_.size());
     583        3300 :     for(unsigned n=0; n<grid_p_.size(); n++) {
     584        2200 :       prob[n]=grid_p_[n]->getValue(t);
     585             :     }
     586        1100 :     double tot_prob=prob[0];
     587        2200 :     for(unsigned i=0; i<alpha_size_; i++) {
     588        1100 :       tot_prob+=prob[i+1]*exp_alpha_[i];
     589             :     }
     590        1100 :     std::vector<double> dV_dAlpha(alpha_size_);
     591        1100 :     std::vector<double> d2V_dAlpha2(sym_alpha_size_);
     592        2200 :     for(unsigned i=0; i<alpha_size_; i++) {
     593        1100 :       dV_dAlpha[i]=-(1-inv_gamma_)/tot_prob*prob[i+1]*exp_alpha_[i];
     594             :     }
     595        2200 :     for(unsigned i=0; i<alpha_size_; i++) {
     596        1100 :       d2V_dAlpha2[get_index(i,i)]=-beta_*dV_dAlpha[i];
     597        2200 :       for(unsigned j=i; j<alpha_size_; j++) {
     598        1100 :         d2V_dAlpha2[get_index(i,j)]-=beta_/(1-inv_gamma_)*dV_dAlpha[i]*dV_dAlpha[j];
     599             :       }
     600             :     }
     601        1100 :     const double unnorm_tg_p=std::pow(tot_prob,inv_gamma_);
     602        1100 :     Z_tg+=unnorm_tg_p;
     603        2200 :     for(unsigned i=0; i<alpha_size_; i++) {
     604        1100 :       tg_dV_dAlpha_[i]+=unnorm_tg_p*dV_dAlpha[i];
     605             :     }
     606        2200 :     for(unsigned ij=0; ij<sym_alpha_size_; ij++) {
     607        1100 :       tg_d2V_dAlpha2_[ij]+=unnorm_tg_p*d2V_dAlpha2[ij];
     608             :     }
     609             :   }
     610          16 :   if(NumParallel_>1) {
     611          10 :     comm.Sum(Z_tg);
     612          10 :     comm.Sum(tg_dV_dAlpha_);
     613          10 :     comm.Sum(tg_d2V_dAlpha2_);
     614             :   }
     615          32 :   for(unsigned i=0; i<alpha_size_; i++) {
     616          16 :     tg_dV_dAlpha_[i]/=Z_tg;
     617             :   }
     618          32 :   for(unsigned ij=0; ij<sym_alpha_size_; ij++) {
     619          16 :     tg_d2V_dAlpha2_[ij]/=Z_tg;
     620             :   }
     621          16 :   getPntrToComponent("rct")->set(-1./beta_*std::log(Z_tg/Z_0)); //Z_tg is the best available estimate of Z_V
     622          16 : }
     623             : 
     624          16 : void VesDeltaF::update_alpha() {
     625             : //combining the averages of multiple walkers
     626          16 :   if(NumWalkers_>1) {
     627           8 :     if(comm.Get_rank()==0) { //sum only once: in the first rank of each walker
     628           8 :       multi_sim_comm.Sum(av_dV_dAlpha_);
     629           8 :       multi_sim_comm.Sum(av_dV_dAlpha_prod_);
     630           8 :       multi_sim_comm.Sum(av_d2V_dAlpha2_);
     631          16 :       for(unsigned i=0; i<alpha_size_; i++) {
     632           8 :         av_dV_dAlpha_[i]/=NumWalkers_;
     633             :       }
     634          16 :       for(unsigned ij=0; ij<sym_alpha_size_; ij++) {
     635           8 :         av_dV_dAlpha_prod_[ij]/=NumWalkers_;
     636           8 :         av_d2V_dAlpha2_[ij]/=NumWalkers_;
     637             :       }
     638             :     }
     639           8 :     if(comm.Get_size()>1) { //if there are more ranks for each walker, everybody has to know
     640           0 :       comm.Bcast(av_dV_dAlpha_,0);
     641           0 :       comm.Bcast(av_dV_dAlpha_prod_,0);
     642           0 :       comm.Bcast(av_d2V_dAlpha2_,0);
     643             :     }
     644             :   }
     645             :   //set work and reset it
     646          16 :   getPntrToComponent("work")->set(work_);
     647          16 :   work_=0;
     648             : 
     649             : //build the gradient and the Hessian of the functional
     650          16 :   std::vector<double> grad_omega(alpha_size_);
     651          16 :   std::vector<double> hess_omega(sym_alpha_size_);
     652          32 :   for(unsigned i=0; i<alpha_size_; i++) {
     653          16 :     grad_omega[i]=tg_dV_dAlpha_[i]-av_dV_dAlpha_[i];
     654          32 :     for(unsigned j=i; j<alpha_size_; j++) {
     655          16 :       const unsigned ij=get_index(i,j);
     656          16 :       hess_omega[ij]=beta_*(av_dV_dAlpha_prod_[ij]-av_dV_dAlpha_[i]*av_dV_dAlpha_[j])+tg_d2V_dAlpha2_[ij]-av_d2V_dAlpha2_[ij];
     657             :     }
     658             :   }
     659             : //calculate the increment and update alpha
     660          16 :   mean_counter_++;
     661             :   long long unsigned mean_weight=mean_counter_;
     662          16 :   if(mean_weight_tau_>0 && mean_weight_tau_<mean_counter_) {
     663             :     mean_weight=mean_weight_tau_;
     664             :   }
     665          16 :   std::vector<double> damping(alpha_size_);
     666          32 :   for(unsigned i=0; i<alpha_size_; i++) {
     667          16 :     double increment_i=grad_omega[i];
     668          32 :     for(unsigned j=0; j<alpha_size_; j++) {
     669          16 :       increment_i+=hess_omega[get_index(i,j)]*(inst_alpha_[j]-mean_alpha_[j]);
     670             :     }
     671          16 :     if(!damping_off_) {
     672           8 :       past_increment2_[i]+=increment_i*increment_i;
     673             :     }
     674          16 :     damping[i]=std::sqrt(past_increment2_[i]);
     675          16 :     prev_exp_alpha_[i]=std::exp(-beta_*mean_alpha_[i]);
     676          16 :     inst_alpha_[i]-=minimization_step_/damping[i]*increment_i;
     677          16 :     mean_alpha_[i]+=(inst_alpha_[i]-mean_alpha_[i])/mean_weight;
     678          16 :     exp_alpha_[i]=std::exp(-beta_*mean_alpha_[i]);
     679             :   }
     680             : 
     681             : //update the Alpha file
     682          16 :   if(mean_counter_%print_stride_==0) {
     683          16 :     alphaOfile_.printField("time",getTime());
     684          32 :     for(unsigned i=0; i<alpha_size_; i++) {
     685          16 :       const std::string index(std::to_string(i+1));
     686          32 :       alphaOfile_.printField("alpha_"+index,mean_alpha_[i]);
     687          32 :       alphaOfile_.printField("auxiliary_"+index,inst_alpha_[i]);
     688          32 :       alphaOfile_.printField("damping_"+index,damping[i]);
     689             :     }
     690          16 :     alphaOfile_.printField();
     691             :   }
     692          16 : }
     693             : 
     694             : //mapping of a [alpha_size_]x[alpha_size_] symmetric matrix into a vector of size sym_alpha_size_, useful for the communicator
     695        4632 : inline unsigned VesDeltaF::get_index(const unsigned i, const unsigned j) const {
     696        4632 :   if(i<=j) {
     697        4632 :     return j+i*(alpha_size_-1)-i*(i-1)/2;
     698             :   } else {
     699           0 :     return get_index(j,i);
     700             :   }
     701             : }
     702             : 
     703             : }
     704             : }

Generated by: LCOV version 1.16