LCOV - code coverage report
Current view: top level - colvar - EEFSolv.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 236 251 94.0 %
Date: 2025-11-25 13:55:50 Functions: 7 8 87.5 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             :    Copyright (c) 2016-2023 The plumed team
       3             :    (see the PEOPLE file at the root of the distribution for a list of names)
       4             : 
       5             :    See http://www.plumed.org for more information.
       6             : 
       7             :    This file is part of plumed, version 2.
       8             : 
       9             :    plumed is free software: you can redistribute it and/or modify
      10             :    it under the terms of the GNU Lesser General Public License as published by
      11             :    the Free Software Foundation, either version 3 of the License, or
      12             :    (at your option) any later version.
      13             : 
      14             :    plumed is distributed in the hope that it will be useful,
      15             :    but WITHOUT ANY WARRANTY; without even the implied warranty of
      16             :    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      17             :    GNU Lesser General Public License for more details.
      18             : 
      19             :    You should have received a copy of the GNU Lesser General Public License
      20             :    along with plumed.  If not, see <http://www.gnu.org/licenses/>.
      21             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      22             : 
      23             : /* This class was originally written by Thomas Loehr */
      24             : 
      25             : #include "Colvar.h"
      26             : #include "core/ActionRegister.h"
      27             : #include "core/ActionSet.h"
      28             : #include "core/PlumedMain.h"
      29             : #include "core/GenericMolInfo.h"
      30             : #include "tools/Communicator.h"
      31             : #include "tools/OpenMP.h"
      32             : #include <initializer_list>
      33             : 
      34             : #define INV_PI_SQRT_PI 0.179587122
      35             : #define KCAL_TO_KJ 4.184
      36             : #define ANG_TO_NM 0.1
      37             : #define ANG3_TO_NM3 0.001
      38             : 
      39             : namespace PLMD {
      40             : namespace colvar {
      41             : 
      42             : //+PLUMEDOC COLVAR EEFSOLV
      43             : /*
      44             : Calculates EEF1 solvation free energy for a group of atoms.
      45             : 
      46             : EEF1 is a solvent-accessible surface area based model, where the free energy of solvation is computed using a pairwise interaction term for non-hydrogen atoms:
      47             : \f[
      48             :     \Delta G^\mathrm{solv}_i = \Delta G^\mathrm{ref}_i - \sum_{j \neq i} f_i(r_{ij}) V_j
      49             : \f]
      50             : where \f$\Delta G^\mathrm{solv}_i\f$ is the free energy of solvation, \f$\Delta G^\mathrm{ref}_i\f$ is the reference solvation free energy, \f$V_j\f$ is the volume of atom \f$j\f$ and
      51             : \f[
      52             :     f_i(r) 4\pi r^2 = \frac{2}{\sqrt{\pi}} \frac{\Delta G^\mathrm{free}_i}{\lambda_i} \exp\left\{ - \frac{(r-R_i)^2}{\lambda^2_i}\right\}
      53             : \f]
      54             : where \f$\Delta G^\mathrm{free}_i\f$ is the solvation free energy of the isolated group, \f$\lambda_i\f$ is the correlation length equal to the width of the first solvation shell and \f$R_i\f$ is the van der Waals radius of atom \f$i\f$.
      55             : 
      56             : The output from this collective variable, the free energy of solvation, can be used with the \ref BIASVALUE keyword to provide implicit solvation to a system. All parameters are designed to be used with a modified CHARMM36 force field. It takes only non-hydrogen atoms as input, these can be conveniently specified using the \ref GROUP action with the NDX_GROUP parameter. To speed up the calculation, EEFSOLV internally uses a neighbor list with a cutoff dependent on the type of atom (maximum of 1.95 nm). This cutoff can be extended further by using the NL_BUFFER keyword.
      57             : 
      58             : \par Examples
      59             : 
      60             : \plumedfile
      61             : #SETTINGS MOLFILE=regtest/basic/rt77/peptide.pdb
      62             : MOLINFO MOLTYPE=protein STRUCTURE=peptide.pdb
      63             : WHOLEMOLECULES ENTITY0=1-111
      64             : 
      65             : # This allows us to select only non-hydrogen atoms
      66             : #SETTINGS AUXFILE=regtest/basic/rt77/index.ndx
      67             : protein-h: GROUP NDX_FILE=index.ndx NDX_GROUP=Protein-H
      68             : 
      69             : # We extend the cutoff by 0.1 nm and update the neighbor list every 40 steps
      70             : solv: EEFSOLV ATOMS=protein-h
      71             : 
      72             : # Here we actually add our calculated energy back to the potential
      73             : bias: BIASVALUE ARG=solv
      74             : 
      75             : PRINT ARG=solv FILE=SOLV
      76             : \endplumedfile
      77             : 
      78             : */
      79             : //+ENDPLUMEDOC
      80             : 
      81             : class EEFSolv : public Colvar {
      82             : private:
      83             :   bool pbc;
      84             :   bool serial;
      85             :   double delta_g_ref;
      86             :   double nl_buffer;
      87             :   unsigned nl_stride;
      88             :   unsigned nl_update;
      89             :   std::vector<std::vector<unsigned> > nl;
      90             :   std::vector<std::vector<bool> > nlexpo;
      91             :   std::vector<std::vector<double> > parameter;
      92             :   void setupConstants(const std::vector<AtomNumber> &atoms, std::vector<std::vector<double> > &parameter, bool tcorr);
      93             :   std::map<std::string, std::map<std::string, std::string> > setupTypeMap();
      94             :   std::map<std::string, std::vector<double> > setupValueMap();
      95             :   void update_neighb();
      96             : 
      97             : public:
      98             :   static void registerKeywords(Keywords& keys);
      99             :   explicit EEFSolv(const ActionOptions&);
     100             :   void calculate() override;
     101             : };
     102             : 
     103             : PLUMED_REGISTER_ACTION(EEFSolv,"EEFSOLV")
     104             : 
     105           7 : void EEFSolv::registerKeywords(Keywords& keys) {
     106           7 :   Colvar::registerKeywords(keys);
     107          14 :   keys.add("atoms", "ATOMS", "The atoms to be included in the calculation, e.g. the whole protein.");
     108          14 :   keys.add("compulsory", "NL_BUFFER", "0.1", "The buffer to the intrinsic cutoff used when calculating pairwise interactions.");
     109          14 :   keys.add("compulsory", "NL_STRIDE", "40", "The frequency with which the neighbor list is updated.");
     110          14 :   keys.addFlag("SERIAL",false,"Perform the calculation in serial - for debug purpose");
     111          14 :   keys.addFlag("TEMP_CORRECTION", false, "Correct free energy of solvation constants for temperatures different from 298.15 K");
     112           7 :   keys.setValueDescription("the EEF1 solvation free energy for the input atoms");
     113           7 : }
     114             : 
     115           5 : EEFSolv::EEFSolv(const ActionOptions&ao):
     116             :   PLUMED_COLVAR_INIT(ao),
     117           5 :   pbc(true),
     118           5 :   serial(false),
     119           5 :   delta_g_ref(0.),
     120           5 :   nl_buffer(0.1),
     121           5 :   nl_stride(40),
     122           5 :   nl_update(0) {
     123             :   std::vector<AtomNumber> atoms;
     124          10 :   parseAtomList("ATOMS", atoms);
     125             :   const unsigned size = atoms.size();
     126           5 :   bool tcorr = false;
     127           5 :   parseFlag("TEMP_CORRECTION", tcorr);
     128           5 :   parse("NL_BUFFER", nl_buffer);
     129           5 :   parse("NL_STRIDE", nl_stride);
     130             : 
     131           5 :   bool nopbc = !pbc;
     132           5 :   parseFlag("NOPBC", nopbc);
     133           5 :   pbc = !nopbc;
     134             : 
     135           5 :   parseFlag("SERIAL",serial);
     136             : 
     137           5 :   checkRead();
     138             : 
     139          10 :   log << "  Bibliography " << plumed.cite("Lazaridis T, Karplus M, Proteins Struct. Funct. Genet. 35, 133 (1999)");
     140           5 :   log << "\n";
     141             : 
     142           5 :   nl.resize(size);
     143           5 :   nlexpo.resize(size);
     144           5 :   parameter.resize(size, std::vector<double>(4, 0));
     145           5 :   setupConstants(atoms, parameter, tcorr);
     146             : 
     147           5 :   addValueWithDerivatives();
     148           5 :   setNotPeriodic();
     149           5 :   requestAtoms(atoms);
     150           5 : }
     151             : 
     152          30 : void EEFSolv::update_neighb() {
     153             :   const double lower_c2 = 0.24 * 0.24; // this is the cut-off for bonded atoms
     154             :   const unsigned size = getNumberOfAtoms();
     155             : 
     156        1830 :   for (unsigned i=0; i<size; i++) {
     157        1800 :     nl[i].clear();
     158             :     nlexpo[i].clear();
     159        1800 :     const Vector posi = getPosition(i);
     160             :     // Loop through neighboring atoms, add the ones below cutoff
     161       54900 :     for (unsigned j=i+1; j<size; j++) {
     162       53100 :       if(parameter[i][1]==0&&parameter[j][1]==0) {
     163        1350 :         continue;
     164             :       }
     165       51750 :       const double d2 = delta(posi, getPosition(j)).modulo2();
     166       51750 :       if (d2 < lower_c2 && j < i+14) {
     167             :         // crude approximation for i-i+1/2 interactions,
     168             :         // we want to exclude atoms separated by less than three bonds
     169        2695 :         continue;
     170             :       }
     171             :       // We choose the maximum lambda value and use a more conservative cutoff
     172       49055 :       double mlambda = 1./parameter[i][2];
     173       49055 :       if (1./parameter[j][2] > mlambda) {
     174             :         mlambda = 1./parameter[j][2];
     175             :       }
     176       49055 :       const double c2 = (2. * mlambda + nl_buffer) * (2. * mlambda + nl_buffer);
     177       49055 :       if (d2 < c2 ) {
     178       26069 :         nl[i].push_back(j);
     179       26069 :         if(parameter[i][2] == parameter[j][2] && parameter[i][3] == parameter[j][3]) {
     180        5175 :           nlexpo[i].push_back(true);
     181             :         } else {
     182       20894 :           nlexpo[i].push_back(false);
     183             :         }
     184             :       }
     185             :     }
     186             :   }
     187          30 : }
     188             : 
     189          30 : void EEFSolv::calculate() {
     190          30 :   if(pbc) {
     191          30 :     makeWhole();
     192             :   }
     193          30 :   if(getExchangeStep()) {
     194           0 :     nl_update = 0;
     195             :   }
     196          30 :   if(nl_update==0) {
     197          30 :     update_neighb();
     198             :   }
     199             : 
     200             :   const unsigned size=getNumberOfAtoms();
     201          30 :   double bias = 0.0;
     202          30 :   std::vector<Vector> deriv(size, Vector(0,0,0));
     203             : 
     204             :   unsigned stride;
     205             :   unsigned rank;
     206          30 :   if(serial) {
     207             :     stride=1;
     208             :     rank=0;
     209             :   } else {
     210          30 :     stride=comm.Get_size();
     211          30 :     rank=comm.Get_rank();
     212             :   }
     213             : 
     214          30 :   unsigned nt=OpenMP::getNumThreads();
     215          30 :   if(nt*stride*10>size) {
     216             :     nt=1;
     217             :   }
     218             : 
     219          30 :   #pragma omp parallel num_threads(nt)
     220             :   {
     221             :     std::vector<Vector> deriv_omp(size, Vector(0,0,0));
     222             :     #pragma omp for reduction(+:bias) nowait
     223             :     for (unsigned i=rank; i<size; i+=stride) {
     224             :       const Vector posi = getPosition(i);
     225             :       double fedensity = 0.0;
     226             :       Vector deriv_i;
     227             :       const double vdw_volume_i   = parameter[i][0];
     228             :       const double delta_g_free_i = parameter[i][1];
     229             :       const double inv_lambda_i   = parameter[i][2];
     230             :       const double vdw_radius_i   = parameter[i][3];
     231             : 
     232             :       // The pairwise interactions are unsymmetric, but we can get away with calculating the distance only once
     233             :       for (unsigned i_nl=0; i_nl<nl[i].size(); i_nl++) {
     234             :         const unsigned j = nl[i][i_nl];
     235             :         const double vdw_volume_j   = parameter[j][0];
     236             :         const double delta_g_free_j = parameter[j][1];
     237             :         const double inv_lambda_j   = parameter[j][2];
     238             :         const double vdw_radius_j   = parameter[j][3];
     239             : 
     240             :         const Vector dist     = delta(posi, getPosition(j));
     241             :         const double rij      = dist.modulo();
     242             :         const double inv_rij  = 1.0 / rij;
     243             :         const double inv_rij2 = inv_rij * inv_rij;
     244             :         const double fact_ij  = inv_rij2 * delta_g_free_i * vdw_volume_j * INV_PI_SQRT_PI * inv_lambda_i;
     245             :         const double fact_ji  = inv_rij2 * delta_g_free_j * vdw_volume_i * INV_PI_SQRT_PI * inv_lambda_j;
     246             : 
     247             :         // in this case we can calculate a single exponential
     248             :         if(!nlexpo[i][i_nl]) {
     249             :           // i-j interaction
     250             :           if(inv_rij > 0.5*inv_lambda_i && delta_g_free_i!=0.) {
     251             :             const double e_arg = (rij - vdw_radius_i)*inv_lambda_i;
     252             :             const double expo  = std::exp(-e_arg*e_arg);
     253             :             const double fact  = expo*fact_ij;
     254             :             const double e_deriv = inv_rij*fact*(inv_rij + e_arg*inv_lambda_i);
     255             :             const Vector dd    = e_deriv*dist;
     256             :             fedensity    += fact;
     257             :             deriv_i      += dd;
     258             :             if(nt>1) {
     259             :               deriv_omp[j] -= dd;
     260             :             } else {
     261             :               deriv[j] -= dd;
     262             :             }
     263             :           }
     264             : 
     265             :           // j-i interaction
     266             :           if(inv_rij > 0.5*inv_lambda_j && delta_g_free_j!=0.) {
     267             :             const double e_arg = (rij - vdw_radius_j)*inv_lambda_j;
     268             :             const double expo  = std::exp(-e_arg*e_arg);
     269             :             const double fact  = expo*fact_ji;
     270             :             const double e_deriv = inv_rij*fact*(inv_rij + e_arg*inv_lambda_j);
     271             :             const Vector dd    = e_deriv*dist;
     272             :             fedensity    += fact;
     273             :             deriv_i      += dd;
     274             :             if(nt>1) {
     275             :               deriv_omp[j] -= dd;
     276             :             } else {
     277             :               deriv[j] -= dd;
     278             :             }
     279             :           }
     280             :         } else {
     281             :           // i-j interaction
     282             :           if(inv_rij > 0.5*inv_lambda_i) {
     283             :             const double e_arg = (rij - vdw_radius_i)*inv_lambda_i;
     284             :             const double expo  = std::exp(-e_arg*e_arg);
     285             :             const double fact  = expo*(fact_ij + fact_ji);
     286             :             const double e_deriv = inv_rij*fact*(inv_rij + e_arg*inv_lambda_i);
     287             :             const Vector dd    = e_deriv*dist;
     288             :             fedensity    += fact;
     289             :             deriv_i      += dd;
     290             :             if(nt>1) {
     291             :               deriv_omp[j] -= dd;
     292             :             } else {
     293             :               deriv[j] -= dd;
     294             :             }
     295             :           }
     296             :         }
     297             : 
     298             :       }
     299             :       if(nt>1) {
     300             :         deriv_omp[i] += deriv_i;
     301             :       } else {
     302             :         deriv[i] += deriv_i;
     303             :       }
     304             :       bias += 0.5*fedensity;
     305             :     }
     306             :     #pragma omp critical
     307             :     if(nt>1)
     308             :       for(unsigned i=0; i<size; i++) {
     309             :         deriv[i]+=deriv_omp[i];
     310             :       }
     311             :   }
     312             : 
     313          30 :   if(!serial) {
     314          30 :     comm.Sum(bias);
     315          30 :     if(!deriv.empty()) {
     316          30 :       comm.Sum(&deriv[0][0],3*deriv.size());
     317             :     }
     318             :   }
     319             : 
     320          30 :   Tensor virial;
     321        1830 :   for(unsigned i=0; i<size; i++) {
     322        1800 :     setAtomsDerivatives(i, -deriv[i]);
     323        1800 :     virial += Tensor(getPosition(i), -deriv[i]);
     324             :   }
     325          30 :   setBoxDerivatives(-virial);
     326          30 :   setValue(delta_g_ref - bias);
     327             : 
     328             :   // Keep track of the neighbourlist updates
     329          30 :   nl_update++;
     330          30 :   if (nl_update == nl_stride) {
     331          30 :     nl_update = 0;
     332             :   }
     333          30 : }
     334             : 
     335           5 : void EEFSolv::setupConstants(const std::vector<AtomNumber> &atoms, std::vector<std::vector<double> > &parameter, bool tcorr) {
     336             :   std::vector<std::vector<double> > parameter_temp;
     337          10 :   parameter_temp.resize(atoms.size(), std::vector<double>(7,0));
     338             :   std::map<std::string, std::vector<double> > valuemap;
     339             :   std::map<std::string, std::map<std::string, std::string> > typemap;
     340           5 :   valuemap = setupValueMap();
     341           5 :   typemap  = setupTypeMap();
     342           5 :   auto * moldat = plumed.getActionSet().selectLatest<GenericMolInfo*>(this);
     343             :   bool cter=false;
     344           5 :   if (moldat) {
     345           5 :     log<<"  MOLINFO DATA found with label " <<moldat->getLabel()<<", using proper atom names\n";
     346         305 :     for(unsigned i=0; i<atoms.size(); ++i) {
     347             : 
     348             :       // Get atom and residue names
     349         300 :       std::string Aname = moldat->getAtomName(atoms[i]);
     350         300 :       std::string Rname = moldat->getResidueName(atoms[i]);
     351         300 :       std::string Atype = typemap[Rname][Aname];
     352             : 
     353             :       // Check for terminal COOH or COO- (different atomtypes & parameters!)
     354         598 :       if (Aname == "OT1" || Aname == "OXT") {
     355             :         // We create a temporary AtomNumber object to access future atoms
     356             :         unsigned ai = atoms[i].index();
     357             :         AtomNumber tmp_an;
     358           2 :         tmp_an.setIndex(ai + 2);
     359           2 :         if (moldat->checkForAtom(tmp_an) && moldat->getAtomName(tmp_an) == "HT2") {
     360             :           // COOH
     361             :           Atype = "OB";
     362             :         } else {
     363             :           // COO-
     364             :           Atype = "OC";
     365             :         }
     366             :         cter = true;
     367             :       }
     368         302 :       if (Aname == "OT2" || (cter == true && Aname == "O")) {
     369             :         unsigned ai = atoms[i].index();
     370             :         AtomNumber tmp_an;
     371           2 :         tmp_an.setIndex(ai + 1);
     372           2 :         if (moldat->checkForAtom(tmp_an) && moldat->getAtomName(tmp_an) == "HT2") {
     373             :           // COOH
     374             :           Atype = "OH1";
     375             :         } else {
     376             :           // COO-
     377             :           Atype = "OC";
     378             :         }
     379             :       }
     380             : 
     381             :       // Check for H-atoms
     382             :       char type;
     383         300 :       char first = Aname.at(0);
     384             : 
     385             :       // GOLDEN RULE: type is first letter, if not a number
     386         300 :       if (!isdigit(first)) {
     387             :         type = first;
     388             :         // otherwise is the second
     389             :       } else {
     390           0 :         type = Aname.at(1);
     391             :       }
     392             : 
     393         300 :       if (type == 'H') {
     394           0 :         error("EEF1-SB does not allow the use of hydrogen atoms!\n");
     395             :       }
     396             : 
     397             :       // Lookup atomtype in table or throw exception if its not there
     398             :       try {
     399         300 :         parameter_temp[i] = valuemap.at(Atype);
     400           0 :       } catch (const std::exception &e) {
     401           0 :         log << "Type: " << Atype << "  Name: " << Aname << "  Residue: " << Rname << "\n";
     402           0 :         error("Invalid atom type!\n");
     403           0 :       }
     404             : 
     405             :       // Temperature correction
     406         300 :       if (tcorr && parameter[i][1] > 0.0) {
     407             :         const double t0 = 298.15;
     408           0 :         const double delta_g_ref_t0 = parameter_temp[i][1];
     409           0 :         const double delta_h_ref_t0 = parameter_temp[i][3];
     410           0 :         const double delta_cp = parameter_temp[i][4];
     411           0 :         const double delta_s_ref_t0 = (delta_h_ref_t0 - delta_g_ref_t0) / t0;
     412           0 :         const double t = getkBT() / getKBoltzmann();
     413           0 :         parameter_temp[i][1] -= delta_s_ref_t0 * (t - t0) - delta_cp * t * std::log(t / t0) + delta_cp * (t - t0);
     414           0 :         parameter_temp[i][2] *= parameter_temp[i][1] / delta_g_ref_t0;
     415             :       }
     416         300 :       parameter[i][0] = parameter_temp[i][0];
     417         300 :       parameter[i][1] = parameter_temp[i][2];
     418         300 :       parameter[i][2] = parameter_temp[i][5];
     419         300 :       parameter[i][3] = parameter_temp[i][6];
     420             :     }
     421             :   } else {
     422           0 :     error("MOLINFO DATA not found\n");
     423             :   }
     424         305 :   for(unsigned i=0; i<atoms.size(); ++i) {
     425         300 :     delta_g_ref += parameter_temp[i][1];
     426             :   }
     427           5 : }
     428             : 
     429           5 : std::map<std::string, std::map<std::string, std::string> > EEFSolv::setupTypeMap()  {
     430             :   std::map<std::string, std::map<std::string, std::string> > typemap;
     431          10 :   typemap["ACE"] = {
     432             :     {"CH3", "CT3"},
     433             :     {"HH31","HA3"},
     434             :     {"HH32","HA3"},
     435             :     {"HH33","HA3"},
     436             :     {"C",   "C"  },
     437             :     {"O",   "O"  }
     438          40 :   };
     439          10 :   typemap["ALA"] = {
     440             :     {"N",   "NH1"},
     441             :     {"HN",  "H"  },
     442             :     {"CA",  "CT1"},
     443             :     {"HA",  "HB1"},
     444             :     {"CB",  "CT3"},
     445             :     {"HB1", "HA3"},
     446             :     {"HB2", "HA3"},
     447             :     {"HB3", "HA3"},
     448             :     {"C",   "C"  },
     449             :     {"O",   "O"  }
     450          60 :   };
     451          10 :   typemap["ARG"] = {
     452             :     {"N",    "NH1"},
     453             :     {"HN",   "H"  },
     454             :     {"CA",   "CT1"},
     455             :     {"HA",   "HB1"},
     456             :     {"CB",   "CT2"},
     457             :     {"HB1",  "HA2"},
     458             :     {"HB2",  "HA2"},
     459             :     {"CG",   "CT2"},
     460             :     {"HG1",  "HA2"},
     461             :     {"HG2",  "HA2"},
     462             :     {"CD",   "CT2"},
     463             :     {"HD1",  "HA2"},
     464             :     {"HD2",  "HA2"},
     465             :     {"NE",   "NC2"},
     466             :     {"HE",   "HC" },
     467             :     {"CZ",   "C"  },
     468             :     {"NH1",  "NC2"},
     469             :     {"HH11", "HC" },
     470             :     {"HH12", "HC" },
     471             :     {"NH2",  "NC2"},
     472             :     {"HH21", "HC" },
     473             :     {"HH22", "HC" },
     474             :     {"C",    "C"  },
     475             :     {"O",    "O"  }
     476         130 :   };
     477          10 :   typemap["ASN"] = {
     478             :     {"N",    "NH1"},
     479             :     {"HN",   "H"  },
     480             :     {"CA",   "CT1"},
     481             :     {"HA",   "HB1"},
     482             :     {"CB",   "CT2"},
     483             :     {"HB1",  "HA2"},
     484             :     {"HB2",  "HA2"},
     485             :     {"CG",   "CC" },
     486             :     {"OD1",  "O"  },
     487             :     {"ND2",  "NH2"},
     488             :     {"HD21", "H"  },
     489             :     {"HD22", "H"  },
     490             :     {"C",    "C"  },
     491             :     {"O",    "O"  }
     492          80 :   };
     493          10 :   typemap["ASPP"] = {
     494             :     {"N",   "NH1"},
     495             :     {"HN",  "H"  },
     496             :     {"CA",  "CT1"},
     497             :     {"HA",  "HB1"},
     498             :     {"CB",  "CT2"},
     499             :     {"HB1", "HA2"},
     500             :     {"HB2", "HA2"},
     501             :     {"CG",  "CD" },
     502             :     {"OD1", "OB" },
     503             :     {"OD2", "OH1"},
     504             :     {"HD2", "H"  },
     505             :     {"C",   "C"  },
     506             :     {"O",   "O"  }
     507          75 :   };
     508          10 :   typemap["ASP"] = {
     509             :     {"N",   "NH1"},
     510             :     {"HN",  "H"  },
     511             :     {"CA",  "CT1"},
     512             :     {"HA",  "HB1"},
     513             :     {"CB",  "CT2"},
     514             :     {"HB1", "HA2"},
     515             :     {"HB2", "HA2"},
     516             :     {"CG",  "CC" },
     517             :     {"OD1", "OC" },
     518             :     {"OD2", "OC" },
     519             :     {"C",   "C"  },
     520             :     {"O",   "O"  }
     521          70 :   };
     522          10 :   typemap["CYS"] = {
     523             :     {"N",   "NH1"},
     524             :     {"HN",  "H"  },
     525             :     {"CA",  "CT1"},
     526             :     {"HA",  "HB1"},
     527             :     {"CB",  "CT2"},
     528             :     {"HB1", "HA2"},
     529             :     {"HB2", "HA2"},
     530             :     {"SG",  "S"  },
     531             :     {"HG1", "HS" },
     532             :     {"C",   "C"  },
     533             :     {"O",   "O"  }
     534          65 :   };
     535          10 :   typemap["GLN"] = {
     536             :     {"N",    "NH1" },
     537             :     {"HN",   "H"   },
     538             :     {"CA",   "CT1" },
     539             :     {"HA",   "HB1" },
     540             :     {"CB",   "CT2" },
     541             :     {"HB1",  "HA2" },
     542             :     {"HB2",  "HA2" },
     543             :     {"CG",   "CT2" },
     544             :     {"HG1",  "HA2" },
     545             :     {"HG2",  "HA2" },
     546             :     {"CD",   "CC"  },
     547             :     {"OE1",  "O"   },
     548             :     {"NE2",  "NH2" },
     549             :     {"HE21", "H"   },
     550             :     {"HE22", "H"   },
     551             :     {"C",    "C"   },
     552             :     {"O",    "O"   }
     553          95 :   };
     554          10 :   typemap["GLUP"] = {
     555             :     {"N",   "NH1"},
     556             :     {"HN",  "H"  },
     557             :     {"CA",  "CT1"},
     558             :     {"HA",  "HB1"},
     559             :     {"CB",  "CT2"},
     560             :     {"HB1", "HA2"},
     561             :     {"HB2", "HA2"},
     562             :     {"CG",  "CT2"},
     563             :     {"HG1", "HA2"},
     564             :     {"HG2", "HA2"},
     565             :     {"CD",  "CD" },
     566             :     {"OE1", "OB" },
     567             :     {"OE2", "OH1"},
     568             :     {"HE2", "H"  },
     569             :     {"C",   "C"  },
     570             :     {"O",   "O"  }
     571          90 :   };
     572          10 :   typemap["GLU"] = {
     573             :     {"N",   "NH1"},
     574             :     {"HN",  "H"  },
     575             :     {"CA",  "CT1"},
     576             :     {"HA",  "HB1"},
     577             :     {"CB",  "CT2"},
     578             :     {"HB1", "HA2"},
     579             :     {"HB2", "HA2"},
     580             :     {"CG",  "CT2"},
     581             :     {"HG1", "HA2"},
     582             :     {"HG2", "HA2"},
     583             :     {"CD",  "CC" },
     584             :     {"OE1", "OC" },
     585             :     {"OE2", "OC" },
     586             :     {"C",   "C"  },
     587             :     {"O",   "O"  }
     588          85 :   };
     589          10 :   typemap["GLY"] = {
     590             :     {"N",   "NH1"},
     591             :     {"HN",  "H"  },
     592             :     {"CA",  "CT2"},
     593             :     {"HA1", "HB2"},
     594             :     {"HA2", "HB2"},
     595             :     {"C",   "C"  },
     596             :     {"O",   "O"  }
     597          45 :   };
     598          10 :   typemap["HSD"] = {
     599             :     {"N",   "NH1"},
     600             :     {"HN",  "H"  },
     601             :     {"CA",  "CT1"},
     602             :     {"HA",  "HB1"},
     603             :     {"CB",  "CT2"},
     604             :     {"HB1", "HA2"},
     605             :     {"HB2", "HA2"},
     606             :     {"ND1", "NR1"},
     607             :     {"HD1", "H"  },
     608             :     {"CG",  "CPH1"},
     609             :     {"CE1", "CPH2"},
     610             :     {"HE1", "HR1"},
     611             :     {"NE2", "NR2"},
     612             :     {"CD2", "CPH1"},
     613             :     {"HD2", "HR3"},
     614             :     {"C",   "C"  },
     615             :     {"O",   "O"  }
     616          95 :   };
     617          10 :   typemap["HIS"] = {
     618             :     {"N",   "NH1"},
     619             :     {"HN",  "H"  },
     620             :     {"CA",  "CT1"},
     621             :     {"HA",  "HB1"},
     622             :     {"CB",  "CT2"},
     623             :     {"HB1", "HA2"},
     624             :     {"HB2", "HA2"},
     625             :     {"ND1", "NR2"},
     626             :     {"CG",  "CPH1"},
     627             :     {"CE1", "CPH2"},
     628             :     {"HE1", "HR1"},
     629             :     {"NE2", "NR1"},
     630             :     {"HE2", "H"  },
     631             :     {"CD2", "CPH1"},
     632             :     {"HD2", "HR3"},
     633             :     {"C",   "C"  },
     634             :     {"O",   "O"  }
     635          95 :   };
     636          10 :   typemap["HSE"] = {
     637             :     {"N",   "NH1"},
     638             :     {"HN",  "H"  },
     639             :     {"CA",  "CT1"},
     640             :     {"HA",  "HB1"},
     641             :     {"CB",  "CT2"},
     642             :     {"HB1", "HA2"},
     643             :     {"HB2", "HA2"},
     644             :     {"ND1", "NR2"},
     645             :     {"CG",  "CPH1"},
     646             :     {"CE1", "CPH2"},
     647             :     {"HE1", "HR1"},
     648             :     {"NE2", "NR1"},
     649             :     {"HE2", "H"  },
     650             :     {"CD2", "CPH1"},
     651             :     {"HD2", "HR3"},
     652             :     {"C",   "C"  },
     653             :     {"O",   "O"  }
     654          95 :   };
     655          10 :   typemap["HSP"] = {
     656             :     {"N",   "NH1"},
     657             :     {"HN",  "H"  },
     658             :     {"CA",  "CT1"},
     659             :     {"HA",  "HB1"},
     660             :     {"CB",  "CT2"},
     661             :     {"HB1", "HA2"},
     662             :     {"HB2", "HA2"},
     663             :     {"CD2", "CPH1"},
     664             :     {"HD2", "HR1"},
     665             :     {"CG",  "CPH1"},
     666             :     {"NE2", "NR3"},
     667             :     {"HE2", "H"  },
     668             :     {"ND1", "NR3"},
     669             :     {"HD1", "H"  },
     670             :     {"CE1", "CPH2"},
     671             :     {"HE1", "HR2"},
     672             :     {"C",   "C"  },
     673             :     {"O",   "O"  }
     674         100 :   };
     675          10 :   typemap["ILE"] = {
     676             :     {"N",    "NH1"},
     677             :     {"HN",   "H"  },
     678             :     {"CA",   "CT1"},
     679             :     {"HA",   "HB1"},
     680             :     {"CB",   "CT1"},
     681             :     {"HB",   "HA1"},
     682             :     {"CG2",  "CT3"},
     683             :     {"HG21", "HA3"},
     684             :     {"HG22", "HA3"},
     685             :     {"HG23", "HA3"},
     686             :     {"CG1",  "CT2"},
     687             :     {"HG11", "HA2"},
     688             :     {"HG12", "HA2"},
     689             :     {"CD",   "CT3"},
     690             :     {"HD1",  "HA3"},
     691             :     {"HD2",  "HA3"},
     692             :     {"HD3",  "HA3"},
     693             :     {"C",    "C"  },
     694             :     {"O",    "O"  }
     695         105 :   };
     696          10 :   typemap["LEU"] = {
     697             :     {"N",    "NH1"},
     698             :     {"HN",   "H"  },
     699             :     {"CA",   "CT1"},
     700             :     {"HA",   "HB1"},
     701             :     {"CB",   "CT2"},
     702             :     {"HB1",  "HA2"},
     703             :     {"HB2",  "HA2"},
     704             :     {"CG",   "CT1"},
     705             :     {"HG",   "HA1"},
     706             :     {"CD1",  "CT3"},
     707             :     {"HD11", "HA3"},
     708             :     {"HD12", "HA3"},
     709             :     {"HD13", "HA3"},
     710             :     {"CD2",  "CT3"},
     711             :     {"HD21", "HA3"},
     712             :     {"HD22", "HA3"},
     713             :     {"HD23", "HA3"},
     714             :     {"C",    "C"  },
     715             :     {"O",    "O"  }
     716         105 :   };
     717          10 :   typemap["LYS"] = {
     718             :     {"N",   "NH1"},
     719             :     {"HN",  "H"  },
     720             :     {"CA",  "CT1"},
     721             :     {"HA",  "HB1"},
     722             :     {"CB",  "CT2"},
     723             :     {"HB1", "HA2"},
     724             :     {"HB2", "HA2"},
     725             :     {"CG",  "CT2"},
     726             :     {"HG1", "HA2"},
     727             :     {"HG2", "HA2"},
     728             :     {"CD",  "CT2"},
     729             :     {"HD1", "HA2"},
     730             :     {"HD2", "HA2"},
     731             :     {"CE",  "CT2"},
     732             :     {"HE1", "HA2"},
     733             :     {"HE2", "HA2"},
     734             :     {"NZ",  "NH3"},
     735             :     {"HZ1", "HC" },
     736             :     {"HZ2", "HC" },
     737             :     {"HZ3", "HC" },
     738             :     {"C",   "C"  },
     739             :     {"O",   "O"  }
     740         120 :   };
     741          10 :   typemap["MET"] = {
     742             :     {"N",   "NH1"},
     743             :     {"HN",  "H"  },
     744             :     {"CA",  "CT1"},
     745             :     {"HA",  "HB1"},
     746             :     {"CB",  "CT2"},
     747             :     {"HB1", "HA2"},
     748             :     {"HB2", "HA2"},
     749             :     {"CG",  "CT2"},
     750             :     {"HG1", "HA2"},
     751             :     {"HG2", "HA2"},
     752             :     {"SD",  "S"  },
     753             :     {"CE",  "CT3"},
     754             :     {"HE1", "HA3"},
     755             :     {"HE2", "HA3"},
     756             :     {"HE3", "HA3"},
     757             :     {"C",   "C"  },
     758             :     {"O",   "O"  }
     759          95 :   };
     760          10 :   typemap["NMA"] = {
     761             :     {"N",   "NH1"},
     762             :     {"HN",  "H"  },
     763             :     {"CH3", "CT3"},
     764             :     {"HH31","HA3"},
     765             :     {"HH32","HA3"},
     766             :     {"HH33","HA3"},
     767          40 :   };
     768          10 :   typemap["PHE"] = {
     769             :     {"N",   "NH1"},
     770             :     {"HN",  "H"  },
     771             :     {"CA",  "CT1"},
     772             :     {"HA",  "HB1"},
     773             :     {"CB",  "CT2"},
     774             :     {"HB1", "HA2"},
     775             :     {"HB2", "HA2"},
     776             :     {"CG",  "CA" },
     777             :     {"CD1", "CA" },
     778             :     {"HD1", "HP" },
     779             :     {"CE1", "CA" },
     780             :     {"HE1", "HP" },
     781             :     {"CZ",  "CA" },
     782             :     {"HZ",  "HP" },
     783             :     {"CD2", "CA" },
     784             :     {"HD2", "HP" },
     785             :     {"CE2", "CA" },
     786             :     {"HE2", "HP" },
     787             :     {"C",   "C"  },
     788             :     {"O",   "O"  }
     789         110 :   };
     790          10 :   typemap["PRO"] = {
     791             :     {"N",   "N"  },
     792             :     {"CD",  "CP3"},
     793             :     {"HD1", "HA2"},
     794             :     {"HD2", "HA2"},
     795             :     {"CA",  "CP1"},
     796             :     {"HA",  "HB1"},
     797             :     {"CB",  "CP2"},
     798             :     {"HB1", "HA2"},
     799             :     {"HB2", "HA2"},
     800             :     {"CG",  "CP2"},
     801             :     {"HG1", "HA2"},
     802             :     {"HG2", "HA2"},
     803             :     {"C",   "C"  },
     804             :     {"O",   "O"  }
     805          80 :   };
     806          10 :   typemap["SER"] = {
     807             :     {"N",   "NH1"},
     808             :     {"HN",  "H"  },
     809             :     {"CA",  "CT1"},
     810             :     {"HA",  "HB1"},
     811             :     {"CB",  "CT2"},
     812             :     {"HB1", "HA2"},
     813             :     {"HB2", "HA2"},
     814             :     {"OG",  "OH1"},
     815             :     {"HG1", "H"  },
     816             :     {"C",   "C"  },
     817             :     {"O",   "O"  }
     818          65 :   };
     819          10 :   typemap["THR"] = {
     820             :     {"N",    "NH1"},
     821             :     {"HN",   "H"  },
     822             :     {"CA",   "CT1"},
     823             :     {"HA",   "HB1"},
     824             :     {"CB",   "CT1"},
     825             :     {"HB",   "HA1"},
     826             :     {"OG1",  "OH1"},
     827             :     {"HG1",  "H"  },
     828             :     {"CG2",  "CT3"},
     829             :     {"HG21", "HA3"},
     830             :     {"HG22", "HA3"},
     831             :     {"HG23", "HA3"},
     832             :     {"C",    "C"  },
     833             :     {"O",    "O"  }
     834          80 :   };
     835          10 :   typemap["TRP"] = {
     836             :     {"N",   "NH1"},
     837             :     {"HN",  "H"  },
     838             :     {"CA",  "CT1"},
     839             :     {"HA",  "HB1"},
     840             :     {"CB",  "CT2"},
     841             :     {"HB1", "HA2"},
     842             :     {"HB2", "HA2"},
     843             :     {"CG",  "CY" },
     844             :     {"CD1", "CA" },
     845             :     {"HD1", "HP" },
     846             :     {"NE1", "NY" },
     847             :     {"HE1", "H"  },
     848             :     {"CE2", "CPT"},
     849             :     {"CD2", "CPT"},
     850             :     {"CE3", "CAI"},
     851             :     {"HE3", "HP" },
     852             :     {"CZ3", "CA" },
     853             :     {"HZ3", "HP" },
     854             :     {"CZ2", "CAI"},
     855             :     {"HZ2", "HP" },
     856             :     {"CH2", "CA" },
     857             :     {"HH2", "HP" },
     858             :     {"C",   "C"  },
     859             :     {"O",   "O"  }
     860         130 :   };
     861          10 :   typemap["TYR"] = {
     862             :     {"N",   "NH1"},
     863             :     {"HN",  "H"  },
     864             :     {"CA",  "CT1"},
     865             :     {"HA",  "HB1"},
     866             :     {"CB",  "CT2"},
     867             :     {"HB1", "HA2"},
     868             :     {"HB2", "HA2"},
     869             :     {"CG",  "CA" },
     870             :     {"CD1", "CA" },
     871             :     {"HD1", "HP" },
     872             :     {"CE1", "CA" },
     873             :     {"HE1", "HP" },
     874             :     {"CZ",  "CA" },
     875             :     {"OH",  "OH1"},
     876             :     {"HH",  "H"  },
     877             :     {"CD2", "CA" },
     878             :     {"HD2", "HP" },
     879             :     {"CE2", "CA" },
     880             :     {"HE2", "HP" },
     881             :     {"C",   "C"  },
     882             :     {"O",   "O"  }
     883         115 :   };
     884          10 :   typemap["VAL"] = {
     885             :     {"N",    "NH1"},
     886             :     {"HN",   "H"  },
     887             :     {"CA",   "CT1"},
     888             :     {"HA",   "HB1"},
     889             :     {"CB",   "CT1"},
     890             :     {"HB",   "HA1"},
     891             :     {"CG1",  "CT3"},
     892             :     {"HG11", "HA3"},
     893             :     {"HG12", "HA3"},
     894             :     {"HG13", "HA3"},
     895             :     {"CG2",  "CT3"},
     896             :     {"HG21", "HA3"},
     897             :     {"HG22", "HA3"},
     898             :     {"HG23", "HA3"},
     899             :     {"C",    "C"  },
     900             :     {"O",    "O"  }
     901          90 :   };
     902           5 :   return typemap;
     903             : }
     904             : 
     905           5 : std::map<std::string, std::vector<double> > EEFSolv::setupValueMap() {
     906             :   // Volume ∆Gref ∆Gfree ∆H ∆Cp λ vdw_radius
     907             :   std::map<std::string, std::vector<double> > valuemap;
     908           5 :   valuemap["C"] = {
     909             :     ANG3_TO_NM3 * 14.720,
     910             :     KCAL_TO_KJ * 0.000,
     911             :     KCAL_TO_KJ * 0.000,
     912             :     KCAL_TO_KJ * 0.000,
     913             :     KCAL_TO_KJ * 0.0,
     914             :     1. / (ANG_TO_NM * 3.5),
     915             :     0.20,
     916          10 :   };
     917           5 :   valuemap["CD"] = {
     918             :     ANG3_TO_NM3 * 14.720,
     919             :     KCAL_TO_KJ * 0.000,
     920             :     KCAL_TO_KJ * 0.000,
     921             :     KCAL_TO_KJ * 0.000,
     922             :     KCAL_TO_KJ * 0.0,
     923             :     1. / (ANG_TO_NM * 3.5),
     924             :     0.20,
     925          10 :   };
     926           5 :   valuemap["CT1"] = {
     927             :     ANG3_TO_NM3 * 11.507,
     928             :     KCAL_TO_KJ * -0.187,
     929             :     KCAL_TO_KJ * -0.187,
     930             :     KCAL_TO_KJ * 0.876,
     931             :     KCAL_TO_KJ * 0.0,
     932             :     1. / (ANG_TO_NM * 3.5),
     933             :     0.20,
     934          10 :   };
     935           5 :   valuemap["CT2"] = {
     936             :     ANG3_TO_NM3 * 18.850,
     937             :     KCAL_TO_KJ * 0.372,
     938             :     KCAL_TO_KJ * 0.372,
     939             :     KCAL_TO_KJ * -0.610,
     940             :     KCAL_TO_KJ * 18.6,
     941             :     1. / (ANG_TO_NM * 3.5),
     942             :     0.20,
     943          10 :   };
     944           5 :   valuemap["CT2A"] = {
     945             :     ANG3_TO_NM3 * 18.666,
     946             :     KCAL_TO_KJ * 0.372,
     947             :     KCAL_TO_KJ * 0.372,
     948             :     KCAL_TO_KJ * -0.610,
     949             :     KCAL_TO_KJ * 18.6,
     950             :     1. / (ANG_TO_NM * 3.5),
     951             :     0.20,
     952          10 :   };
     953           5 :   valuemap["CT3"] = {
     954             :     ANG3_TO_NM3 * 27.941,
     955             :     KCAL_TO_KJ * 1.089,
     956             :     KCAL_TO_KJ * 1.089,
     957             :     KCAL_TO_KJ * -1.779,
     958             :     KCAL_TO_KJ * 35.6,
     959             :     1. / (ANG_TO_NM * 3.5),
     960             :     0.204,
     961          10 :   };
     962           5 :   valuemap["CPH1"] = {
     963             :     ANG3_TO_NM3 * 5.275,
     964             :     KCAL_TO_KJ * 0.057,
     965             :     KCAL_TO_KJ * 0.080,
     966             :     KCAL_TO_KJ * -0.973,
     967             :     KCAL_TO_KJ * 6.9,
     968             :     1. / (ANG_TO_NM * 3.5),
     969             :     0.18,
     970          10 :   };
     971           5 :   valuemap["CPH2"] = {
     972             :     ANG3_TO_NM3 * 11.796,
     973             :     KCAL_TO_KJ * 0.057,
     974             :     KCAL_TO_KJ * 0.080,
     975             :     KCAL_TO_KJ * -0.973,
     976             :     KCAL_TO_KJ * 6.9,
     977             :     1. / (ANG_TO_NM * 3.5),
     978             :     0.18,
     979          10 :   };
     980           5 :   valuemap["CPT"] = {
     981             :     ANG3_TO_NM3 * 4.669,
     982             :     KCAL_TO_KJ * -0.890,
     983             :     KCAL_TO_KJ * -0.890,
     984             :     KCAL_TO_KJ * 2.220,
     985             :     KCAL_TO_KJ * 6.9,
     986             :     1. / (ANG_TO_NM * 3.5),
     987             :     0.186,
     988          10 :   };
     989           5 :   valuemap["CY"] = {
     990             :     ANG3_TO_NM3 * 10.507,
     991             :     KCAL_TO_KJ * -0.890,
     992             :     KCAL_TO_KJ * -0.890,
     993             :     KCAL_TO_KJ * 2.220,
     994             :     KCAL_TO_KJ * 6.9,
     995             :     1. / (ANG_TO_NM * 3.5),
     996             :     0.199,
     997          10 :   };
     998           5 :   valuemap["CP1"] = {
     999             :     ANG3_TO_NM3 * 25.458,
    1000             :     KCAL_TO_KJ * -0.187,
    1001             :     KCAL_TO_KJ * -0.187,
    1002             :     KCAL_TO_KJ * 0.876,
    1003             :     KCAL_TO_KJ * 0.0,
    1004             :     1. / (ANG_TO_NM * 3.5),
    1005             :     0.227,
    1006          10 :   };
    1007           5 :   valuemap["CP2"] = {
    1008             :     ANG3_TO_NM3 * 19.880,
    1009             :     KCAL_TO_KJ * 0.372,
    1010             :     KCAL_TO_KJ * 0.372,
    1011             :     KCAL_TO_KJ * -0.610,
    1012             :     KCAL_TO_KJ * 18.6,
    1013             :     1. / (ANG_TO_NM * 3.5),
    1014             :     0.217,
    1015          10 :   };
    1016           5 :   valuemap["CP3"] = {
    1017             :     ANG3_TO_NM3 * 26.731,
    1018             :     KCAL_TO_KJ * 0.372,
    1019             :     KCAL_TO_KJ * 0.372,
    1020             :     KCAL_TO_KJ * -0.610,
    1021             :     KCAL_TO_KJ * 18.6,
    1022             :     1. / (ANG_TO_NM * 3.5),
    1023             :     0.217,
    1024          10 :   };
    1025           5 :   valuemap["CC"] = {
    1026             :     ANG3_TO_NM3 * 16.539,
    1027             :     KCAL_TO_KJ * 0.000,
    1028             :     KCAL_TO_KJ * 0.000,
    1029             :     KCAL_TO_KJ * 0.000,
    1030             :     KCAL_TO_KJ * 0.0,
    1031             :     1. / (ANG_TO_NM * 3.5),
    1032             :     0.20,
    1033          10 :   };
    1034           5 :   valuemap["CAI"] = {
    1035             :     ANG3_TO_NM3 * 18.249,
    1036             :     KCAL_TO_KJ * 0.057,
    1037             :     KCAL_TO_KJ * 0.057,
    1038             :     KCAL_TO_KJ * -0.973,
    1039             :     KCAL_TO_KJ * 6.9,
    1040             :     1. / (ANG_TO_NM * 3.5),
    1041             :     0.199,
    1042          10 :   };
    1043           5 :   valuemap["CA"] = {
    1044             :     ANG3_TO_NM3 * 18.249,
    1045             :     KCAL_TO_KJ * 0.057,
    1046             :     KCAL_TO_KJ * 0.057,
    1047             :     KCAL_TO_KJ * -0.973,
    1048             :     KCAL_TO_KJ * 6.9,
    1049             :     1. / (ANG_TO_NM * 3.5),
    1050             :     0.199,
    1051          10 :   };
    1052           5 :   valuemap["N"] = {
    1053             :     ANG3_TO_NM3 * 0.000,
    1054             :     KCAL_TO_KJ * -1.000,
    1055             :     KCAL_TO_KJ * -1.000,
    1056             :     KCAL_TO_KJ * -1.250,
    1057             :     KCAL_TO_KJ * 8.8,
    1058             :     1. / (ANG_TO_NM * 3.5),
    1059             :     0.185,
    1060          10 :   };
    1061           5 :   valuemap["NR1"] = {
    1062             :     ANG3_TO_NM3 * 15.273,
    1063             :     KCAL_TO_KJ * -5.950,
    1064             :     KCAL_TO_KJ * -5.950,
    1065             :     KCAL_TO_KJ * -9.059,
    1066             :     KCAL_TO_KJ * -8.8,
    1067             :     1. / (ANG_TO_NM * 3.5),
    1068             :     0.185,
    1069          10 :   };
    1070           5 :   valuemap["NR2"] = {
    1071             :     ANG3_TO_NM3 * 15.111,
    1072             :     KCAL_TO_KJ * -3.820,
    1073             :     KCAL_TO_KJ * -3.820,
    1074             :     KCAL_TO_KJ * -4.654,
    1075             :     KCAL_TO_KJ * -8.8,
    1076             :     1. / (ANG_TO_NM * 3.5),
    1077             :     0.185,
    1078          10 :   };
    1079           5 :   valuemap["NR3"] = {
    1080             :     ANG3_TO_NM3 * 15.071,
    1081             :     KCAL_TO_KJ * -5.950,
    1082             :     KCAL_TO_KJ * -5.950,
    1083             :     KCAL_TO_KJ * -9.059,
    1084             :     KCAL_TO_KJ * -8.8,
    1085             :     1. / (ANG_TO_NM * 3.5),
    1086             :     0.185,
    1087          10 :   };
    1088           5 :   valuemap["NH1"] = {
    1089             :     ANG3_TO_NM3 * 10.197,
    1090             :     KCAL_TO_KJ * -5.950,
    1091             :     KCAL_TO_KJ * -5.950,
    1092             :     KCAL_TO_KJ * -9.059,
    1093             :     KCAL_TO_KJ * -8.8,
    1094             :     1. / (ANG_TO_NM * 3.5),
    1095             :     0.185,
    1096          10 :   };
    1097           5 :   valuemap["NH2"] = {
    1098             :     ANG3_TO_NM3 * 18.182,
    1099             :     KCAL_TO_KJ * -5.950,
    1100             :     KCAL_TO_KJ * -5.950,
    1101             :     KCAL_TO_KJ * -9.059,
    1102             :     KCAL_TO_KJ * -8.8,
    1103             :     1. / (ANG_TO_NM * 3.5),
    1104             :     0.185,
    1105          10 :   };
    1106           5 :   valuemap["NH3"] = {
    1107             :     ANG3_TO_NM3 * 18.817,
    1108             :     KCAL_TO_KJ * -20.000,
    1109             :     KCAL_TO_KJ * -20.000,
    1110             :     KCAL_TO_KJ * -25.000,
    1111             :     KCAL_TO_KJ * -18.0,
    1112             :     1. / (ANG_TO_NM * 6.0),
    1113             :     0.185,
    1114          10 :   };
    1115           5 :   valuemap["NC2"] = {
    1116             :     ANG3_TO_NM3 * 18.215,
    1117             :     KCAL_TO_KJ * -10.000,
    1118             :     KCAL_TO_KJ * -10.000,
    1119             :     KCAL_TO_KJ * -12.000,
    1120             :     KCAL_TO_KJ * -7.0,
    1121             :     1. / (ANG_TO_NM * 6.0),
    1122             :     0.185,
    1123          10 :   };
    1124           5 :   valuemap["NY"] = {
    1125             :     ANG3_TO_NM3 * 12.001,
    1126             :     KCAL_TO_KJ * -5.950,
    1127             :     KCAL_TO_KJ * -5.950,
    1128             :     KCAL_TO_KJ * -9.059,
    1129             :     KCAL_TO_KJ * -8.8,
    1130             :     1. / (ANG_TO_NM * 3.5),
    1131             :     0.185,
    1132          10 :   };
    1133           5 :   valuemap["NP"] = {
    1134             :     ANG3_TO_NM3 * 4.993,
    1135             :     KCAL_TO_KJ * -20.000,
    1136             :     KCAL_TO_KJ * -20.000,
    1137             :     KCAL_TO_KJ * -25.000,
    1138             :     KCAL_TO_KJ * -18.0,
    1139             :     1. / (ANG_TO_NM * 6.0),
    1140             :     0.185,
    1141          10 :   };
    1142           5 :   valuemap["O"] = {
    1143             :     ANG3_TO_NM3 * 11.772,
    1144             :     KCAL_TO_KJ * -5.330,
    1145             :     KCAL_TO_KJ * -5.330,
    1146             :     KCAL_TO_KJ * -5.787,
    1147             :     KCAL_TO_KJ * -8.8,
    1148             :     1. / (ANG_TO_NM * 3.5),
    1149             :     0.170,
    1150          10 :   };
    1151           5 :   valuemap["OB"] = {
    1152             :     ANG3_TO_NM3 * 11.694,
    1153             :     KCAL_TO_KJ * -5.330,
    1154             :     KCAL_TO_KJ * -5.330,
    1155             :     KCAL_TO_KJ * -5.787,
    1156             :     KCAL_TO_KJ * -8.8,
    1157             :     1. / (ANG_TO_NM * 3.5),
    1158             :     0.170,
    1159          10 :   };
    1160           5 :   valuemap["OC"] = {
    1161             :     ANG3_TO_NM3 * 12.003,
    1162             :     KCAL_TO_KJ * -10.000,
    1163             :     KCAL_TO_KJ * -10.000,
    1164             :     KCAL_TO_KJ * -12.000,
    1165             :     KCAL_TO_KJ * -9.4,
    1166             :     1. / (ANG_TO_NM * 6.0),
    1167             :     0.170,
    1168          10 :   };
    1169           5 :   valuemap["OH1"] = {
    1170             :     ANG3_TO_NM3 * 15.528,
    1171             :     KCAL_TO_KJ * -5.920,
    1172             :     KCAL_TO_KJ * -5.920,
    1173             :     KCAL_TO_KJ * -9.264,
    1174             :     KCAL_TO_KJ * -11.2,
    1175             :     1. / (ANG_TO_NM * 3.5),
    1176             :     0.177,
    1177          10 :   };
    1178           5 :   valuemap["OS"] = {
    1179             :     ANG3_TO_NM3 * 6.774,
    1180             :     KCAL_TO_KJ * -2.900,
    1181             :     KCAL_TO_KJ * -2.900,
    1182             :     KCAL_TO_KJ * -3.150,
    1183             :     KCAL_TO_KJ * -4.8,
    1184             :     1. / (ANG_TO_NM * 3.5),
    1185             :     0.177,
    1186          10 :   };
    1187           5 :   valuemap["S"] = {
    1188             :     ANG3_TO_NM3 * 20.703,
    1189             :     KCAL_TO_KJ * -3.240,
    1190             :     KCAL_TO_KJ * -3.240,
    1191             :     KCAL_TO_KJ * -4.475,
    1192             :     KCAL_TO_KJ * -39.9,
    1193             :     1. / (ANG_TO_NM * 3.5),
    1194             :     0.20,
    1195          10 :   };
    1196           5 :   valuemap["SM"] = {
    1197             :     ANG3_TO_NM3 * 21.306,
    1198             :     KCAL_TO_KJ * -3.240,
    1199             :     KCAL_TO_KJ * -3.240,
    1200             :     KCAL_TO_KJ * -4.475,
    1201             :     KCAL_TO_KJ * -39.9,
    1202             :     1. / (ANG_TO_NM * 3.5),
    1203             :     0.197,
    1204          10 :   };
    1205           5 :   return valuemap;
    1206             : }
    1207             : }
    1208             : }

Generated by: LCOV version 1.16