LCOV - code coverage report
Current view: top level - colvar - Torsion.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 110 113 97.3 %
Date: 2025-11-25 13:55:50 Functions: 6 7 85.7 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             :    Copyright (c) 2011-2023 The plumed team
       3             :    (see the PEOPLE file at the root of the distribution for a list of names)
       4             : 
       5             :    See http://www.plumed.org for more information.
       6             : 
       7             :    This file is part of plumed, version 2.
       8             : 
       9             :    plumed is free software: you can redistribute it and/or modify
      10             :    it under the terms of the GNU Lesser General Public License as published by
      11             :    the Free Software Foundation, either version 3 of the License, or
      12             :    (at your option) any later version.
      13             : 
      14             :    plumed is distributed in the hope that it will be useful,
      15             :    but WITHOUT ANY WARRANTY; without even the implied warranty of
      16             :    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      17             :    GNU Lesser General Public License for more details.
      18             : 
      19             :    You should have received a copy of the GNU Lesser General Public License
      20             :    along with plumed.  If not, see <http://www.gnu.org/licenses/>.
      21             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      22             : #include "Colvar.h"
      23             : #include "ColvarShortcut.h"
      24             : #include "MultiColvarTemplate.h"
      25             : #include "core/ActionRegister.h"
      26             : #include "tools/Torsion.h"
      27             : 
      28             : namespace PLMD {
      29             : namespace colvar {
      30             : 
      31             : //+PLUMEDOC COLVAR TORSION
      32             : /*
      33             : Calculate a torsional angle.
      34             : 
      35             : This command can be used to compute the torsion between four atoms or alternatively
      36             : to calculate the angle between two vectors projected on the plane
      37             : orthogonal to an axis.
      38             : 
      39             : \par Examples
      40             : 
      41             : This input tells plumed to print the torsional angle between atoms 1, 2, 3 and 4
      42             : on file COLVAR.
      43             : \plumedfile
      44             : t: TORSION ATOMS=1,2,3,4
      45             : # this is an alternative, equivalent, definition:
      46             : # t: TORSION VECTOR1=2,1 AXIS=2,3 VECTOR2=3,4
      47             : PRINT ARG=t FILE=COLVAR
      48             : \endplumedfile
      49             : 
      50             : If you are working with a protein you can specify the special named torsion angles \f$\phi\f$, \f$\psi\f$, \f$\omega\f$ and \f$\chi_1\f$
      51             : by using TORSION in combination with the \ref MOLINFO command.  This can be done by using the following
      52             : syntax.
      53             : 
      54             : \plumedfile
      55             : #SETTINGS MOLFILE=regtest/basic/rt32/helix.pdb
      56             : MOLINFO MOLTYPE=protein STRUCTURE=myprotein.pdb
      57             : t1: TORSION ATOMS=@phi-3
      58             : t2: TORSION ATOMS=@psi-4
      59             : PRINT ARG=t1,t2 FILE=colvar STRIDE=10
      60             : \endplumedfile
      61             : 
      62             : Here, \@phi-3 tells plumed that you would like to calculate the \f$\phi\f$ angle in the third residue of the protein.
      63             : Similarly \@psi-4 tells plumed that you want to calculate the \f$\psi\f$ angle of the fourth residue of the protein.
      64             : 
      65             : Both of the previous examples specify that the torsion angle should be calculated based on the position of four atoms.
      66             : For the first example in particular the assumption when the torsion is specified in this way is that there are chemical
      67             : bonds between atoms 1 and 2, atoms 2 and 3 and atoms 3 and 4. In general, however, a torsional angle measures the angle
      68             : between two planes, which have at least one vector in common.  As shown below, there is thus an alternate, more general, way
      69             : through which we can define a torsional angle:
      70             : 
      71             : \plumedfile
      72             : t1: TORSION VECTOR1=1,2 AXIS=3,4 VECTOR2=5,6
      73             : PRINT ARG=t1 FILE=colvar STRIDE=20
      74             : \endplumedfile
      75             : 
      76             : This input instructs PLUMED to calculate the angle between the plane containing the vector connecting atoms 1 and 2 and the vector
      77             : connecting atoms 3 and 4 and the plane containing this second vector and the vector connecting atoms 5 and 6.  We can even use
      78             : PLUMED to calculate the torsional angle between two bond vectors around the z-axis as shown below:
      79             : 
      80             : \plumedfile
      81             : a0: FIXEDATOM AT=0,0,0
      82             : az: FIXEDATOM AT=0,0,1
      83             : t1: TORSION VECTOR1=1,2 AXIS=a0,az VECTOR2=5,6
      84             : PRINT ARG=t1 FILE=colvar STRIDE=20
      85             : \endplumedfile
      86             : 
      87             : 
      88             : */
      89             : //+ENDPLUMEDOC
      90             : 
      91             : //+PLUMEDOC COLVAR TORSION_SCALAR
      92             : /*
      93             : Calculate a torsional angle.
      94             : 
      95             : \par Examples
      96             : 
      97             : */
      98             : //+ENDPLUMEDOC
      99             : 
     100             : //+PLUMEDOC MCOLVAR TORSION_VECTOR
     101             : /*
     102             : Calculate multiple torsional angles.
     103             : 
     104             : \par Examples
     105             : 
     106             : */
     107             : //+ENDPLUMEDOC
     108             : 
     109             : class Torsion : public Colvar {
     110             :   bool pbc;
     111             :   bool do_cosine;
     112             : 
     113             :   std::vector<double> value, masses, charges;
     114             :   std::vector<std::vector<Vector> > derivs;
     115             :   std::vector<Tensor> virial;
     116             : public:
     117             :   explicit Torsion(const ActionOptions&);
     118             :   static void parseAtomList( const int& num, std::vector<AtomNumber>& t, ActionAtomistic* aa );
     119             :   static unsigned getModeAndSetupValues( ActionWithValue* av );
     120             : // active methods:
     121             :   void calculate() override;
     122             :   static void calculateCV( const unsigned& mode, const std::vector<double>& masses, const std::vector<double>& charges,
     123             :                            const std::vector<Vector>& pos, std::vector<double>& vals, std::vector<std::vector<Vector> >& derivs,
     124             :                            std::vector<Tensor>& virial, const ActionAtomistic* aa );
     125             :   static void registerKeywords(Keywords& keys);
     126             : };
     127             : 
     128             : typedef ColvarShortcut<Torsion> TorsionShortcut;
     129             : PLUMED_REGISTER_ACTION(TorsionShortcut,"TORSION")
     130             : PLUMED_REGISTER_ACTION(Torsion,"TORSION_SCALAR")
     131             : typedef MultiColvarTemplate<Torsion> TorsionMulti;
     132             : PLUMED_REGISTER_ACTION(TorsionMulti,"TORSION_VECTOR")
     133             : 
     134        2130 : void Torsion::registerKeywords(Keywords& keys) {
     135        2130 :   Colvar::registerKeywords( keys );
     136        2130 :   keys.setDisplayName("TORSION");
     137        4260 :   keys.add("atoms-1","ATOMS","the four atoms involved in the torsional angle");
     138        4260 :   keys.add("atoms-2","AXIS","two atoms that define an axis.  You can use this to find the angle in the plane perpendicular to the axis between the vectors specified using the VECTORA and VECTORB keywords.");
     139        4260 :   keys.add("atoms-2","VECTORA","two atoms that define a vector.  You can use this in combination with VECTOR2 and AXIS");
     140        4260 :   keys.add("atoms-2","VECTORB","two atoms that define a vector.  You can use this in combination with VECTOR1 and AXIS");
     141        4260 :   keys.add("atoms-3","VECTOR1","two atoms that define a vector.  You can use this in combination with VECTOR2 and AXIS");
     142        4260 :   keys.add("atoms-3","VECTOR2","two atoms that define a vector.  You can use this in combination with VECTOR1 and AXIS");
     143        4260 :   keys.addFlag("COSINE",false,"calculate cosine instead of dihedral");
     144        4260 :   keys.add("hidden","NO_ACTION_LOG","suppresses printing from action on the log");
     145        2130 :   keys.setValueDescription("the TORSION involving these atoms");
     146        2130 : }
     147             : 
     148         691 : Torsion::Torsion(const ActionOptions&ao):
     149             :   PLUMED_COLVAR_INIT(ao),
     150         691 :   pbc(true),
     151         691 :   do_cosine(false),
     152         691 :   value(1),
     153         693 :   derivs(1),
     154        1382 :   virial(1) {
     155         691 :   derivs[0].resize(6);
     156             :   std::vector<AtomNumber> atoms;
     157             :   std::vector<AtomNumber> v1;
     158        1382 :   ActionAtomistic::parseAtomList("VECTOR1",v1);
     159         691 :   if( v1.size()>0 ) {
     160             :     std::vector<AtomNumber> v2;
     161           4 :     ActionAtomistic::parseAtomList("VECTOR2",v2);
     162             :     std::vector<AtomNumber> axis;
     163           4 :     ActionAtomistic::parseAtomList("AXIS",axis);
     164           2 :     if( !(v1.size()==2 && v2.size()==2 && axis.size()==2)) {
     165           0 :       error("VECTOR1, VECTOR2 and AXIS should specify 2 atoms each");
     166             :     }
     167           2 :     atoms.resize(6);
     168           2 :     atoms[0]=v1[1];
     169           2 :     atoms[1]=v1[0];
     170           2 :     atoms[2]=axis[0];
     171           2 :     atoms[3]=axis[1];
     172           2 :     atoms[4]=v2[0];
     173           2 :     atoms[5]=v2[1];
     174           2 :     log.printf("  between lines %d-%d and %d-%d, projected on the plane orthogonal to line %d-%d\n",
     175             :                v1[0].serial(),v1[1].serial(),v2[0].serial(),v2[1].serial(),axis[0].serial(),axis[1].serial());
     176             :   } else {
     177         689 :     parseAtomList(-1,atoms,this);
     178             :   }
     179         690 :   unsigned mode=getModeAndSetupValues(this);
     180         690 :   if( mode==1 ) {
     181           3 :     do_cosine=true;
     182             :   }
     183             : 
     184         690 :   bool nopbc=!pbc;
     185         692 :   parseFlag("NOPBC",nopbc);
     186         690 :   pbc=!nopbc;
     187         690 :   checkRead();
     188             : 
     189         689 :   if(pbc) {
     190         577 :     log.printf("  using periodic boundary conditions\n");
     191             :   } else {
     192         112 :     log.printf("  without periodic boundary conditions\n");
     193             :   }
     194         689 :   requestAtoms(atoms);
     195         695 : }
     196             : 
     197         794 : void Torsion::parseAtomList( const int& num, std::vector<AtomNumber>& t, ActionAtomistic* aa ) {
     198             :   std::vector<AtomNumber> v1,v2,axis;
     199         794 :   aa->parseAtomList("ATOMS",num,t);
     200         794 :   aa->parseAtomList("VECTORA",num,v1);
     201         794 :   aa->parseAtomList("VECTORB",num,v2);
     202        1588 :   aa->parseAtomList("AXIS",num,axis);
     203             : 
     204         794 :   if(t.size()==4) {
     205         747 :     if(!(v1.empty() && v2.empty() && axis.empty())) {
     206           0 :       aa->error("ATOMS keyword is not compatible with VECTORA, VECTORB and AXIS keywords");
     207             :     }
     208         747 :     aa->log.printf("  between atoms %d %d %d %d\n",t[0].serial(),t[1].serial(),t[2].serial(),t[3].serial());
     209         747 :     t.resize(6);
     210         747 :     t[5]=t[3];
     211         747 :     t[4]=t[2];
     212         747 :     t[3]=t[2];
     213         747 :     t[2]=t[1];
     214          47 :   } else if(t.empty()) {
     215          46 :     if( num>0 && v1.empty() && v2.empty() && axis.empty() ) {
     216             :       return;
     217             :     }
     218          32 :     if(!(v1.size()==2 && v2.size()==2 && axis.size()==2)) {
     219           0 :       aa->error("VECTORA, VECTORB and AXIS should specify 2 atoms each");
     220             :     }
     221          32 :     aa->log.printf("  between lines %d-%d and %d-%d, projected on the plane orthogonal to line %d-%d\n",
     222             :                    v1[0].serial(),v1[1].serial(),v2[0].serial(),v2[1].serial(),axis[0].serial(),axis[1].serial());
     223          32 :     t.resize(6);
     224          32 :     t[0]=v1[1];
     225          32 :     t[1]=v1[0];
     226          32 :     t[2]=axis[0];
     227          32 :     t[3]=axis[1];
     228          32 :     t[4]=v2[0];
     229          32 :     t[5]=v2[1];
     230             :   } else if( t.size()!=4 ) {
     231           2 :     aa->error("ATOMS should specify 4 atoms");
     232             :   }
     233             : }
     234             : 
     235         704 : unsigned Torsion::getModeAndSetupValues( ActionWithValue* av ) {
     236             :   bool do_cos;
     237         704 :   av->parseFlag("COSINE",do_cos);
     238         704 :   if(do_cos) {
     239           4 :     av->log.printf("  calculating cosine instead of torsion\n");
     240             :   }
     241             : 
     242         704 :   av->addValueWithDerivatives();
     243         704 :   if(!do_cos) {
     244        1400 :     av->setPeriodic("-pi","pi");
     245         700 :     return 0;
     246             :   }
     247           4 :   av->setNotPeriodic();
     248             :   return 1;
     249             : }
     250             : 
     251             : // calculator
     252       37137 : void Torsion::calculate() {
     253       37137 :   if(pbc) {
     254       34865 :     makeWhole();
     255             :   }
     256       37137 :   if(do_cosine) {
     257          15 :     calculateCV( 1, masses, charges, getPositions(), value, derivs, virial, this );
     258             :   } else {
     259       37122 :     calculateCV( 0, masses, charges, getPositions(), value, derivs, virial, this );
     260             :   }
     261      259959 :   for(unsigned i=0; i<6; ++i) {
     262      222822 :     setAtomsDerivatives(i,derivs[0][i] );
     263             :   }
     264       37137 :   setValue(value[0]);
     265       37137 :   setBoxDerivatives( virial[0] );
     266       37137 : }
     267             : 
     268       37916 : void Torsion::calculateCV( const unsigned& mode, const std::vector<double>& masses, const std::vector<double>& charges,
     269             :                            const std::vector<Vector>& pos, std::vector<double>& vals, std::vector<std::vector<Vector> >& derivs,
     270             :                            std::vector<Tensor>& virial, const ActionAtomistic* aa ) {
     271       37916 :   Vector d0=delta(pos[1],pos[0]);
     272       37916 :   Vector d1=delta(pos[3],pos[2]);
     273       37916 :   Vector d2=delta(pos[5],pos[4]);
     274       37916 :   Vector dd0,dd1,dd2;
     275             :   PLMD::Torsion t;
     276       37916 :   vals[0] = t.compute(d0,d1,d2,dd0,dd1,dd2);
     277       37916 :   if(mode==1) {
     278          30 :     dd0 *= -std::sin(vals[0]);
     279          30 :     dd1 *= -std::sin(vals[0]);
     280          30 :     dd2 *= -std::sin(vals[0]);
     281          30 :     vals[0] = std::cos(vals[0]);
     282             :   }
     283       37916 :   derivs[0][0] = dd0;
     284       37916 :   derivs[0][1] = -dd0;
     285       37916 :   derivs[0][2] = dd1;
     286       37916 :   derivs[0][3] = -dd1;
     287       37916 :   derivs[0][4] = dd2;
     288       37916 :   derivs[0][5] = -dd2;
     289       37916 :   setBoxDerivativesNoPbc( pos, derivs, virial );
     290       37916 : }
     291             : 
     292             : }
     293             : }
     294             : 
     295             : 
     296             : 

Generated by: LCOV version 1.16