LCOV - code coverage report
Current view: top level - crystdistrib - Quaternion.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 172 220 78.2 %
Date: 2025-11-25 13:55:50 Functions: 6 7 85.7 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             :    Copyright (c) crystdistrib 2023-2023 The code team
       3             :    (see the PEOPLE-crystdistrib file at the root of this folder for a list of names)
       4             : 
       5             :    This file is part of crystdistrib code module.
       6             : 
       7             :    The crystdistrib code module is free software: you can redistribute it and/or modify
       8             :    it under the terms of the GNU Lesser General Public License as published by
       9             :    the Free Software Foundation, either version 3 of the License, or
      10             :    (at your option) any later version.
      11             : 
      12             :    The crystdistrib code module is distributed in the hope that it will be useful,
      13             :    but WITHOUT ANY WARRANTY; without even the implied warranty of
      14             :    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      15             :    GNU Lesser General Public License for more details.
      16             : 
      17             :    You should have received a copy of the GNU Lesser General Public License
      18             :    along with the crystdistrib code module.  If not, see <http://www.gnu.org/licenses/>.
      19             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      20             : #include "core/Colvar.h"
      21             : #include "colvar/ColvarShortcut.h"
      22             : #include "colvar/MultiColvarTemplate.h"
      23             : #include "core/ActionRegister.h"
      24             : #include "tools/Pbc.h"
      25             : 
      26             : namespace PLMD {
      27             : namespace crystdistrib {
      28             : 
      29             : //+PLUMEDOC COLVAR QUATERNION
      30             : /*
      31             : Calculate quaternions for molecules.
      32             : 
      33             : The reference frame for the molecule is defined using the positions of three user selected atoms.  From the positions of these atoms,
      34             : \f$\mathbf{x}_1\f$, \f$\mathbf{x}_2\f$ and \f$\mathbf{x}_3\f$, we define the vectors of the reference frame as:
      35             : 
      36             : \f[
      37             : \begin{aligned}
      38             : \mathbf{x} & = \mathbf{x}_2 - \mathbf{x}_1 \\
      39             : \mathbf{y} & = (\mathbf{x}_2 - \mathbf{x}_1) \times (\mathbf{x}_3 - \mathbf{x}_1) \\
      40             : \mathbf{z} & \mathbf{x} \times \mathbf{y}
      41             : \f]
      42             : 
      43             : \par Examples
      44             : 
      45             : This calculates the quaternions for a molecule with 10 atoms
      46             : 
      47             : \plumedfile
      48             : q1: QUATERNION ATOMS1=1,2,3
      49             : PRINT ARG=q1.w,q1.i,q1.j,q1.k FILE=colvar
      50             : \endplumedfile
      51             : 
      52             : This calculate the quaternions for two molecules with 10 atoms
      53             : 
      54             : \plumedfile
      55             : q1: QUATERNION ATOMS1=1,2,3 ATOMS=4,5,6
      56             : PRINT ARG=q1.w,q1.i,q1.j,q1.k FILE=colvar
      57             : \endplumedfile
      58             : 
      59             : */
      60             : //+ENDPLUMEDOC
      61             : 
      62             : //+PLUMEDOC COLVAR QUATERNION_SCALAR
      63             : /*
      64             : Calculate a single quaternion
      65             : 
      66             : See \ref QUATERNION for more details
      67             : 
      68             : \par Examples
      69             : 
      70             : */
      71             : //+ENDPLUMEDOC
      72             : 
      73             : //+PLUMEDOC COLVAR QUATERNION_VECTOR
      74             : /*
      75             : Calculate multiple quaternions
      76             : 
      77             : See \ref QUATERNION for more details
      78             : 
      79             : \par Examples
      80             : 
      81             : */
      82             : //+ENDPLUMEDOC
      83             : 
      84             : //simple hamilton/quaternion product, which is just expanding the two quats as expected, then applying the rules for i j k
      85             : //passing 12 references might be a bit silly
      86             : //void QuatProduct(double &a1, double &b1, double &c1, double &d1, double &a2, double &b2, double &c2, double &d2, double &w, double &i, double &j, double &k) {
      87             : //
      88             : //  w = a1*a2 - b1*b2 - c1*c2 - d1*d2;
      89             : //  i = a1*b2 + b1*a2 + c1*d2 - d1*c2;
      90             : //  j = a1*c2 - b1*d2 + c1*a2 + d1*b2;
      91             : //  k = a1*d2 + b1*c2 - c1*b2 + d1*a2;
      92             : //}
      93             : //
      94             : //
      95             : //
      96             : 
      97             : class Quaternion : public Colvar {
      98             : private:
      99             :   bool pbc;
     100             :   std::vector<double> value, masses, charges;
     101             :   std::vector<std::vector<Vector> > derivs;
     102             :   std::vector<Tensor> virial;
     103             : public:
     104             :   static void registerKeywords( Keywords& keys );
     105             :   explicit Quaternion(const ActionOptions&);
     106             :   static void parseAtomList( const int& num, std::vector<AtomNumber>& t, ActionAtomistic* aa );
     107             :   static unsigned getModeAndSetupValues( ActionWithValue* av );
     108             : // active methods:
     109             :   void calculate() override;
     110             :   static void calculateCV( const unsigned& mode, const std::vector<double>& masses, const std::vector<double>& charges,
     111             :                            const std::vector<Vector>& pos, std::vector<double>& vals, std::vector<std::vector<Vector> >& derivs,
     112             :                            std::vector<Tensor>& virial, const ActionAtomistic* aa );
     113             : };
     114             : 
     115             : typedef colvar::ColvarShortcut<Quaternion> QuaternionShortcut;
     116             : PLUMED_REGISTER_ACTION(QuaternionShortcut,"QUATERNION")
     117             : PLUMED_REGISTER_ACTION(Quaternion,"QUATERNION_SCALAR")
     118             : typedef colvar::MultiColvarTemplate<Quaternion> QuaternionMulti;
     119             : PLUMED_REGISTER_ACTION(QuaternionMulti,"QUATERNION_VECTOR")
     120             : 
     121          86 : void Quaternion::registerKeywords( Keywords& keys ) {
     122          86 :   Colvar::registerKeywords( keys );
     123          86 :   keys.setDisplayName("QUATERNION");
     124         172 :   keys.add("atoms","ATOMS","the three atom that we are using to calculate the quaternion");
     125         172 :   keys.addOutputComponent("w","default","the real component of quaternion");
     126         172 :   keys.addOutputComponent("i","default","the i component of the quaternion");
     127         172 :   keys.addOutputComponent("j","default","the j component of the quaternion");
     128         172 :   keys.addOutputComponent("k","default","the k component of the quaternion");
     129         172 :   keys.add("hidden","NO_ACTION_LOG","suppresses printing from action on the log");
     130          86 : }
     131             : 
     132           5 : Quaternion::Quaternion(const ActionOptions&ao):
     133             :   PLUMED_COLVAR_INIT(ao),
     134           5 :   pbc(true),
     135           5 :   value(4),
     136           5 :   derivs(4),
     137          10 :   virial(4) {
     138          25 :   for(unsigned i=0; i<4; ++i) {
     139          20 :     derivs[i].resize(3);
     140             :   }
     141             :   std::vector<AtomNumber> atoms;
     142           5 :   parseAtomList(-1,atoms,this);
     143           5 :   if(atoms.size()!=3) {
     144           0 :     error("Number of specified atoms should be 3");
     145             :   }
     146             :   // please note, I do NO checking if these atoms are in the same molecule at all, so be careful in your input
     147             : 
     148           5 :   bool nopbc=!pbc;
     149           5 :   parseFlag("NOPBC",nopbc);
     150           5 :   pbc=!nopbc;
     151             : 
     152           5 :   unsigned mode = getModeAndSetupValues( this );
     153           5 :   requestAtoms(atoms);
     154           5 : }
     155             : 
     156        1318 : void Quaternion::parseAtomList( const int& num, std::vector<AtomNumber>& t, ActionAtomistic* aa ) {
     157        2636 :   aa->parseAtomList("ATOMS",num,t);
     158        1318 :   if( t.size()==3 ) {
     159        1306 :     aa->log.printf("  involving atoms %d %d %d\n",t[0].serial(),t[1].serial(),t[0].serial());
     160             :   }
     161        1318 : }
     162             : 
     163          17 : unsigned Quaternion::getModeAndSetupValues( ActionWithValue* av ) {
     164             :   // This sets up values that we can pass around in PLUMED
     165          34 :   av->addComponentWithDerivatives("w");
     166          17 :   av->componentIsNotPeriodic("w");
     167          34 :   av->addComponentWithDerivatives("i");
     168          17 :   av->componentIsNotPeriodic("i");
     169          34 :   av->addComponentWithDerivatives("j");
     170          17 :   av->componentIsNotPeriodic("j");
     171          34 :   av->addComponentWithDerivatives("k");
     172          17 :   av->componentIsNotPeriodic("k");
     173          17 :   return 0;
     174             : }
     175             : 
     176          45 : void Quaternion::calculate() {
     177          45 :   if(pbc) {
     178          45 :     makeWhole();
     179             :   }
     180             : 
     181          45 :   calculateCV( 0, masses, charges, getPositions(), value, derivs, virial, this );
     182         225 :   for(unsigned j=0; j<4; ++j) {
     183         180 :     Value* valuej=getPntrToComponent(j);
     184         720 :     for(unsigned i=0; i<3; ++i) {
     185         540 :       setAtomsDerivatives(valuej,i,derivs[j][i] );
     186             :     }
     187         180 :     setBoxDerivatives(valuej,virial[j]);
     188         180 :     valuej->set(value[j]);
     189             :   }
     190          45 : }
     191             : 
     192             : // calculator
     193        5718 : void Quaternion::calculateCV( const unsigned& mode, const std::vector<double>& masses, const std::vector<double>& charges,
     194             :                               const std::vector<Vector>& pos, std::vector<double>& vals, std::vector<std::vector<Vector> >& derivs,
     195             :                               std::vector<Tensor>& virial, const ActionAtomistic* aa ) {
     196             :   //declarations
     197        5718 :   Vector vec1_comp = delta( pos[0], pos[1] ); //components between atom 1 and 2
     198        5718 :   Vector vec2_comp = delta( pos[0], pos[2] ); //components between atom 1 and 3
     199             : 
     200             : ////////x-vector calculations///////
     201        5718 :   double magx = vec1_comp.modulo();
     202        5718 :   Vector xt = vec1_comp / magx;
     203        5718 :   std::vector<Tensor> dx(3);
     204        5718 :   double magx3= magx*magx*magx;
     205             : //dx[i] - derivatives of atom i's coordinates
     206        5718 :   dx[0](0,0) = ( -(vec1_comp[1]*vec1_comp[1]+vec1_comp[2]*vec1_comp[2])/magx3 ); //dx[0]/dx0
     207        5718 :   dx[0](0,1) = (  vec1_comp[0]*vec1_comp[1]/magx3 );                 // dx[0]/dy0
     208        5718 :   dx[0](0,2) = (  vec1_comp[0]*vec1_comp[2]/magx3 );                 // dx[0]/dz0
     209        5718 :   dx[0](1,0) = (  vec1_comp[1]*vec1_comp[0]/magx3 );                 // dx[1]/dx0
     210        5718 :   dx[0](1,1) = ( -(vec1_comp[0]*vec1_comp[0]+vec1_comp[2]*vec1_comp[2])/magx3 );   // dx[1]/dy0
     211        5718 :   dx[0](1,2) = (  vec1_comp[1]*vec1_comp[2]/magx3 ); //dx[1]/dz0
     212        5718 :   dx[0](2,0) = (  vec1_comp[2]*vec1_comp[0]/magx3 );//etc
     213        5718 :   dx[0](2,1) = (  vec1_comp[2]*vec1_comp[1]/magx3 );
     214        5718 :   dx[0](2,2) = ( -(vec1_comp[1]*vec1_comp[1]+vec1_comp[0]*vec1_comp[0])/magx3 );
     215             : 
     216        5718 :   dx[1](0,0) = ( (vec1_comp[1]*vec1_comp[1]+vec1_comp[2]*vec1_comp[2])/magx3 );//dx[0]/dx1
     217        5718 :   dx[1](0,1) = ( -vec1_comp[0]*vec1_comp[1]/magx3 );//dx[0]/dy1
     218        5718 :   dx[1](0,2) = ( -vec1_comp[0]*vec1_comp[2]/magx3 );
     219        5718 :   dx[1](1,0) = ( -vec1_comp[1]*vec1_comp[0]/magx3 );
     220        5718 :   dx[1](1,1) = ( (vec1_comp[0]*vec1_comp[0]+vec1_comp[2]*vec1_comp[2])/magx3 );
     221        5718 :   dx[1](1,2) = ( -vec1_comp[1]*vec1_comp[2]/magx3 );
     222        5718 :   dx[1](2,0) = ( -vec1_comp[2]*vec1_comp[0]/magx3 );
     223        5718 :   dx[1](2,1) = ( -vec1_comp[2]*vec1_comp[1]/magx3 );
     224        5718 :   dx[1](2,2) = ( (vec1_comp[1]*vec1_comp[1]+vec1_comp[0]*vec1_comp[0])/magx3 );
     225        5718 :   dx[2].zero();//not atom[2] terms present
     226             : 
     227             : ////////y-vector calculations////////
     228             :   //project vec2_comp on to vec1_comp
     229             :   //first do dot product of unormalized x and unormed y, divided by magnitude of x^2
     230        5718 :   double dp = dotProduct( vec1_comp, vec2_comp );
     231             :   double magx2=magx*magx;
     232        5718 :   std::vector<Vector> fac_derivs(3);
     233        5718 :   double magx4=magx2*magx2, fac = dp/magx2; //fac meaning factor on front
     234        5718 :   fac_derivs[0] = (-vec2_comp - vec1_comp)/magx2 + 2*dp*vec1_comp / magx4;
     235        5718 :   fac_derivs[1] = (vec2_comp)/(magx2) - 2*dp*vec1_comp / magx4;
     236        5718 :   fac_derivs[2] = (vec1_comp)/(magx2);   //atom 1, components x2,y2,z2
     237             :   //now multiply fac by unormed x, and subtract it from unormed y, then normalize
     238        5718 :   Vector yt = vec2_comp - fac*vec1_comp;
     239        5718 :   std::vector<Tensor> dy(3);
     240        5718 :   dy[0](0,0) = -1 - fac_derivs[0][0]*vec1_comp[0] + fac;   // dy[0]/dx0
     241        5718 :   dy[0](0,1) = -fac_derivs[0][1]*vec1_comp[0];             // dy[0]/dy0
     242        5718 :   dy[0](0,2) = -fac_derivs[0][2]*vec1_comp[0];
     243        5718 :   dy[0](1,0) = -fac_derivs[0][0]*vec1_comp[1];
     244        5718 :   dy[0](1,1) = -1 - fac_derivs[0][1]*vec1_comp[1] + fac;
     245        5718 :   dy[0](1,2) = -fac_derivs[0][2]*vec1_comp[1];
     246        5718 :   dy[0](2,0) = -fac_derivs[0][0]*vec1_comp[2];
     247        5718 :   dy[0](2,1) = -fac_derivs[0][1]*vec1_comp[2];
     248        5718 :   dy[0](2,2) = -1 - fac_derivs[0][2]*vec1_comp[2] + fac;
     249             : 
     250        5718 :   dy[1](0,0) = -fac_derivs[1][0]*vec1_comp[0] - fac; //dy[0]/dx0
     251        5718 :   dy[1](0,1) = -fac_derivs[1][1]*vec1_comp[0];
     252        5718 :   dy[1](0,2) = -fac_derivs[1][2]*vec1_comp[0];
     253        5718 :   dy[1](1,0) = -fac_derivs[1][0]*vec1_comp[1];
     254        5718 :   dy[1](1,1) = -fac_derivs[1][1]*vec1_comp[1] - fac;
     255        5718 :   dy[1](1,2) = -fac_derivs[1][2]*vec1_comp[1];
     256        5718 :   dy[1](2,0) = -fac_derivs[1][0]*vec1_comp[2];
     257        5718 :   dy[1](2,1) = -fac_derivs[1][1]*vec1_comp[2];
     258        5718 :   dy[1](2,2) = -fac_derivs[1][2]*vec1_comp[2] - fac;
     259             : 
     260        5718 :   dy[2](0,0) = 1 - fac_derivs[2][0]*vec1_comp[0];//dy[0]/dx2
     261        5718 :   dy[2](0,1) = -fac_derivs[2][1]*vec1_comp[0];
     262        5718 :   dy[2](0,2) = -fac_derivs[2][2]*vec1_comp[0];
     263        5718 :   dy[2](1,0) = -fac_derivs[2][0]*vec1_comp[1];
     264        5718 :   dy[2](1,1) = 1 - fac_derivs[2][1]*vec1_comp[1];
     265        5718 :   dy[2](1,2) = -fac_derivs[2][2]*vec1_comp[1];
     266        5718 :   dy[2](2,0) = -fac_derivs[2][0]*vec1_comp[2];
     267        5718 :   dy[2](2,1) = -fac_derivs[2][1]*vec1_comp[2];
     268        5718 :   dy[2](2,2) = 1 - fac_derivs[2][2]*vec1_comp[2];
     269             :   //now normalize, and we have our y vector
     270        5718 :   double magy = yt.modulo();
     271        5718 :   double imagy = 1/magy, magy3 = magy*magy*magy;
     272        5718 :   Tensor abc;
     273       22872 :   for(unsigned i=0; i<3; ++i) {
     274       17154 :     abc.setRow(i, yt);
     275             :   }
     276        5718 :   Tensor abc_diag;
     277        5718 :   abc_diag.setRow(0, Vector(yt[0], 0, 0));
     278        5718 :   abc_diag.setRow(1, Vector(0, yt[1], 0));
     279        5718 :   abc_diag.setRow(2, Vector(0, 0, yt[2]));
     280        5718 :   Tensor abc_prod = matmul(abc_diag, abc);
     281       22872 :   for(unsigned i=0; i<3; ++i) {
     282       17154 :     dy[i] = dy[i]/magy - matmul(abc_prod, dy[i])/magy3;
     283             :   }
     284             :   //normalize now, derivatives are with respect to un-normalized y vector
     285        5718 :   yt = yt / magy;
     286             : 
     287             : ///////z-vector calculations/////////
     288             : //comparatively simple
     289        5718 :   Vector zt = crossProduct(xt,yt);
     290        5718 :   std::vector<Tensor> dz(3);
     291        5718 :   dz[0].setCol( 0, crossProduct( dx[0].getCol(0), yt ) + crossProduct( xt, dy[0].getCol(0) ) );
     292        5718 :   dz[0].setCol( 1, crossProduct( dx[0].getCol(1), yt ) + crossProduct( xt, dy[0].getCol(1) ) );
     293        5718 :   dz[0].setCol( 2, crossProduct( dx[0].getCol(2), yt ) + crossProduct( xt, dy[0].getCol(2) ) );
     294             : 
     295        5718 :   dz[1].setCol( 0, crossProduct( dx[1].getCol(0), yt ) + crossProduct( xt, dy[1].getCol(0) ) );
     296        5718 :   dz[1].setCol( 1, crossProduct( dx[1].getCol(1), yt ) + crossProduct( xt, dy[1].getCol(1) ) );
     297        5718 :   dz[1].setCol( 2, crossProduct( dx[1].getCol(2), yt ) + crossProduct( xt, dy[1].getCol(2) ) );
     298             : 
     299        5718 :   dz[2].setCol( 0, crossProduct( xt, dy[2].getCol(0) ) );
     300        5718 :   dz[2].setCol( 1, crossProduct( xt, dy[2].getCol(1) ) );
     301        5718 :   dz[2].setCol( 2, crossProduct( xt, dy[2].getCol(2) ) );
     302             : 
     303             : //for debugging frame values
     304             : //aa->log.printf("%8.6f %8.6f %8.6f\n%8.6f %8.6f %8.6f\n%8.6f %8.6f %8.6f\n",xt[0],xt[1],xt[2],yt[0],yt[1],yt[2],zt[0],zt[1],zt[2]);
     305             : 
     306             : //for bebuffing derivatives
     307             : //aa->log.printf("x1 x2 x3 y1 y2 y3 z1 z2 z3\n");
     308             : //for (int i=0; i<3; i++){
     309             : //for (int j=0;j<3;j++){
     310             : //aa->log.printf("%8.4f %8.4f %8.4f\n%8.4f %8.4f %8.4f\n%8.4f %8.4f %8.4f\n",dx[i](0,j), dx[i](1,j), dx[i](2,j), dy[i](0,j), dy[i](1,j), dy[i](2,j), dz[i](0,j), dz[i](1,j), dz[i](2,j));
     311             : //}
     312             : //}
     313             : //
     314             : 
     315             : //the above 9 components form an orthonormal basis, centered on the molecule in question
     316             : //the rotation matrix is generally the inverse of this matrix, and in this case since it is 1) orthogonal and 2) its determinant is 1
     317             : //the inverse is simply the transpose
     318             : 
     319             : 
     320             : //[x[0] x[1] x[2]]
     321             : //[y[0] y[1] y[2]]
     322             : //[z[0] z[1] z[2]]
     323             : //QUICKFIX to transpose basis
     324        5718 :   Vector x(xt[0],yt[0],zt[0]);
     325        5718 :   Vector y(xt[1],yt[1],zt[1]);
     326        5718 :   Vector z(xt[2],yt[2],zt[2]);
     327             : 
     328             : //likewise transposing the tensors into proper form
     329        5718 :   std::vector<Tensor> tdx(3);
     330        5718 :   std::vector<Tensor> tdy(3);
     331        5718 :   std::vector<Tensor> tdz(3);
     332       22872 :   for (int i=0; i<3; ++i) {
     333       17154 :     tdx[i].setRow(0, dx[i].getRow(0));
     334       17154 :     tdx[i].setRow(1, dy[i].getRow(0));
     335       17154 :     tdx[i].setRow(2, dz[i].getRow(0));
     336             : 
     337       17154 :     tdy[i].setRow(0, dx[i].getRow(1));
     338       17154 :     tdy[i].setRow(1, dy[i].getRow(1));
     339       17154 :     tdy[i].setRow(2, dz[i].getRow(1));
     340             : 
     341       17154 :     tdz[i].setRow(0, dx[i].getRow(2));
     342       17154 :     tdz[i].setRow(1, dy[i].getRow(2));
     343       17154 :     tdz[i].setRow(2, dz[i].getRow(2));
     344             :   }
     345             : 
     346             : //convert to quaternion
     347        5718 :   double tr = x[0] + y[1] + z[2] + 1; //trace of the rotation matrix + 1
     348        5718 :   std::vector<Vector> dS(3);
     349        5718 :   if (tr > 1.0E-8) { //to avoid numerical instability
     350        5718 :     double S = 1/(sqrt(tr) * 2); // S=4*qw
     351       22872 :     for(unsigned i=0; i<3; ++i) {
     352       17154 :       dS[i] = (-2*S*S*S)*(tdx[i].getRow(0) + tdy[i].getRow(1) + tdz[i].getRow(2));
     353             :     }
     354             : 
     355        5718 :     vals[0] = 0.25 / S;
     356       22872 :     for(unsigned i=0; i<3; ++i) {
     357       17154 :       derivs[0][i] =-0.25*dS[i]/(S*S);
     358             :     }
     359             : 
     360        5718 :     vals[1] = (z[1] - y[2]) * S;
     361       22872 :     for(unsigned i=0; i<3; ++i) {
     362       17154 :       derivs[1][i] = (S)*(tdz[i].getRow(1) - tdy[i].getRow(2)) + (z[1]-y[2])*dS[i];
     363             :     }
     364             : 
     365        5718 :     vals[2] = (x[2] - z[0]) * S;
     366       22872 :     for(unsigned i=0; i<3; ++i) {
     367       17154 :       derivs[2][i] = (S)*(tdx[i].getRow(2) - tdz[i].getRow(0)) + (x[2]-z[0])*dS[i];
     368             :     }
     369             : 
     370        5718 :     vals[3] = (y[0] - x[1]) * S;
     371       22872 :     for(unsigned i=0; i<3; ++i) {
     372       17154 :       derivs[3][i] = (S)*(tdy[i].getRow(0) - tdx[i].getRow(1)) + (y[0]-x[1])*dS[i];
     373             :     }
     374           0 :   } else if ((x[0] > y[1])&(x[0] > z[2])) {
     375           0 :     double S = sqrt(1.0 + x[0] - y[1] - z[2]) * 2; // S=4*qx
     376           0 :     for(unsigned i=0; i<3; ++i) {
     377           0 :       dS[i] = (2/S)*(tdx[i].getRow(0) - tdy[i].getRow(1) - tdz[i].getRow(2));
     378             :     }
     379             : 
     380           0 :     vals[0] = (z[1] - y[2]) / S;
     381           0 :     for(unsigned i=0; i<3; ++i) {
     382           0 :       derivs[0][i] = (1/S)*(tdz[i].getRow(1) - tdy[i].getRow(2)) - (vals[0]/S)*dS[i];
     383             :     }
     384             : 
     385           0 :     vals[1] = 0.25 * S;
     386           0 :     for(unsigned i=0; i<3; ++i) {
     387           0 :       derivs[1][i] =0.25*dS[i];
     388             :     }
     389             : 
     390           0 :     vals[2] = (x[1] + y[0]) / S;
     391           0 :     for(unsigned i=0; i<3; ++i) {
     392           0 :       derivs[2][i] = (1/S)*(tdx[i].getRow(1) + tdy[i].getRow(0)) - (vals[2]/S)*dS[i];
     393             :     }
     394             : 
     395           0 :     vals[3] = (x[2] + z[0]) / S;
     396           0 :     for(unsigned i=0; i<3; ++i) {
     397           0 :       derivs[3][i] = (1/S)*(tdx[i].getRow(2) + tdz[i].getRow(0)) - (vals[3]/S)*dS[i];
     398             :     }
     399           0 :   } else if (y[1] > z[2]) {
     400           0 :     double S = sqrt(1.0 + y[1] - x[0] - z[2]) * 2; // S=4*qy
     401           0 :     for(unsigned i=0; i<3; ++i) {
     402           0 :       dS[i] = (2/S)*( -tdx[i].getRow(0) + tdy[i].getRow(1) - tdz[i].getRow(2));
     403             :     }
     404             : 
     405             : 
     406           0 :     vals[0] = (x[2] - z[0]) / S;
     407           0 :     for(unsigned i=0; i<3; ++i) {
     408           0 :       derivs[0][i] = (1/S)*(tdx[i].getRow(2) - tdz[i].getRow(0)) - (vals[0]/S)*dS[i];
     409             :     }
     410             : 
     411           0 :     vals[1] = (x[1] + y[0]) / S;
     412           0 :     for(unsigned i=0; i<3; ++i) {
     413           0 :       derivs[1][i] = (1/S)*(tdx[i].getRow(1) + tdy[i].getRow(0)) - (vals[1]/S)*dS[i];
     414             :     }
     415             : 
     416           0 :     vals[2] = 0.25 * S;
     417           0 :     for(unsigned i=0; i<3; ++i) {
     418           0 :       derivs[2][i] =0.25*dS[i];
     419             :     }
     420             : 
     421           0 :     vals[3] = (y[2] + z[1]) / S;
     422           0 :     for(unsigned i=0; i<3; ++i) {
     423           0 :       derivs[3][i] = (1/S)*(tdy[i].getRow(2) + tdz[i].getRow(1)) - (vals[3]/S)*dS[i];
     424             :     }
     425             :   } else {
     426           0 :     double S = sqrt(1.0 + z[2] - x[0] - y[1]) * 2; // S=4*qz
     427           0 :     for(unsigned i=0; i<3; ++i) {
     428           0 :       dS[i] = (2/S)*(-tdx[i].getRow(0) - tdy[i].getRow(1) + tdz[i].getRow(2));
     429             :     }
     430             : 
     431             : 
     432           0 :     vals[0] = (y[0] - x[1]) / S;
     433           0 :     for(unsigned i=0; i<3; ++i) {
     434           0 :       derivs[0][i] = (1/S)*(tdy[i].getRow(0) - tdx[i].getRow(1)) - (vals[0]/S)*dS[i];
     435             :     }
     436             : 
     437           0 :     vals[1] = (x[2] + z[0]) / S;
     438           0 :     for(unsigned i=0; i<3; ++i) {
     439           0 :       derivs[1][i] = (1/S)*(tdx[i].getRow(2) + tdz[i].getRow(0)) - (vals[1]/S)*dS[i];
     440             :     }
     441             : 
     442           0 :     vals[2] = (y[2] + z[1]) / S;
     443           0 :     for(unsigned i=0; i<3; ++i) {
     444           0 :       derivs[2][i] = (1/S)*(tdy[i].getRow(2) + tdz[i].getRow(1)) - (vals[2]/S)*dS[i];
     445             :     }
     446             : 
     447           0 :     vals[3] = 0.25 * S;
     448           0 :     for(unsigned i=0; i<3; ++i) {
     449           0 :       derivs[3][i] =0.25*dS[i];
     450             :     }
     451             :   }
     452        5718 :   setBoxDerivativesNoPbc( pos, derivs, virial );
     453             : 
     454        5718 : }
     455             : 
     456             : }
     457             : }
     458             : 
     459             : 
     460             : 

Generated by: LCOV version 1.16