LCOV - code coverage report
Current view: top level - fourier - FourierTransform.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 98 119 82.4 %
Date: 2025-11-25 13:55:50 Functions: 6 9 66.7 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             :    Copyright (c) 2016-2023 The plumed team
       3             :    (see the PEOPLE file at the root of the distribution for a list of names)
       4             : 
       5             :    See http://www.plumed.org for more information.
       6             : 
       7             :    This file is part of plumed, version 2.
       8             : 
       9             :    plumed is free software: you can redistribute it and/or modify
      10             :    it under the terms of the GNU Lesser General Public License as published by
      11             :    the Free Software Foundation, either version 3 of the License, or
      12             :    (at your option) any later version.
      13             : 
      14             :    plumed is distributed in the hope that it will be useful,
      15             :    but WITHOUT ANY WARRANTY; without even the implied warranty of
      16             :    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      17             :    GNU Lesser General Public License for more details.
      18             : 
      19             :    You should have received a copy of the GNU Lesser General Public License
      20             :    along with plumed.  If not, see <http://www.gnu.org/licenses/>.
      21             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      22             : #include <iostream>
      23             : #include <complex>
      24             : #include "gridtools/ActionWithGrid.h"
      25             : #include "core/ActionRegister.h"
      26             : #ifdef __PLUMED_HAS_FFTW
      27             : #include <fftw3.h> // FFTW interface
      28             : #endif
      29             : 
      30             : namespace PLMD {
      31             : namespace fourier {
      32             : 
      33             : //+PLUMEDOC GRIDANALYSIS FOURIER_TRANSFORM
      34             : /*
      35             : Compute the Discrete Fourier Transform (DFT) by means of FFTW of data stored on a 2D grid.
      36             : 
      37             : This action can operate on any other action that outputs scalar data on a two-dimensional grid.
      38             : 
      39             : Up to now, even if the input data are purely real the action uses a complex DFT.
      40             : 
      41             : Just as a quick reference, given a 1D array \f$\mathbf{X}\f$ of size \f$n\f$, this action computes the vector \f$\mathbf{Y}\f$ given by
      42             : 
      43             : \f[
      44             : Y_k = \sum_{j=0}^{n-1} X_j e^{2\pi\, j k \sqrt{-1}/n}.
      45             : \f]
      46             : 
      47             : This can be easily extended to more than one dimension. All the other details can be found at http://www.fftw.org/doc/What-FFTW-Really-Computes.html#What-FFTW-Really-Computes.
      48             : 
      49             : The keyword "FOURIER_PARAMETERS" deserves just a note on the usage. This keyword specifies how the Fourier transform will be normalized. The keyword takes two numerical parameters (\f$a,\,b\f$) that define the normalization according to the following expression
      50             : 
      51             : \f[
      52             : \frac{1}{n^{(1-a)/2}} \sum_{j=0}^{n-1} X_j e^{2\pi b\, j k \sqrt{-1}/n}
      53             : \f]
      54             : 
      55             : The default values of these parameters are: \f$a=1\f$ and \f$b=1\f$.
      56             : 
      57             : \par Examples
      58             : 
      59             : The following example tells Plumed to compute the complex 2D 'backward' Discrete Fourier Transform by taking the data saved on a grid called 'density', and normalizing the output by \f$ \frac{1}{\sqrt{N_x\, N_y}}\f$, where \f$N_x\f$ and \f$N_y\f$ are the number of data on the grid (it can be the case that \f$N_x\neq N_y\f$):
      60             : 
      61             : \plumedfile
      62             : FOURIER_TRANSFORM STRIDE=1 GRID=density FT_TYPE=complex FOURIER_PARAMETERS=0,-1
      63             : \endplumedfile
      64             : 
      65             : */
      66             : //+ENDPLUMEDOC
      67             : 
      68             : 
      69             : class FourierTransform : public gridtools::ActionWithGrid {
      70             : private:
      71             :   bool firsttime;
      72             :   std::string output_type;
      73             :   bool real_output, store_norm;
      74             :   std::vector<int> fourier_params;
      75             :   gridtools::GridCoordinatesObject gridcoords;
      76             : public:
      77             :   static void registerKeywords( Keywords& keys );
      78             :   explicit FourierTransform(const ActionOptions&ao);
      79           0 :   void setupOnFirstStep( const bool incalc ) override {
      80           0 :     plumed_error();
      81             :   }
      82             :   unsigned getNumberOfDerivatives() override ;
      83             :   const gridtools::GridCoordinatesObject& getGridCoordinatesObject() const override ;
      84             :   std::vector<std::string> getGridCoordinateNames() const override ;
      85           0 :   void performTask( const unsigned& current, MultiValue& myvals ) const override {
      86           0 :     plumed_error();
      87             :   }
      88             :   void calculate() override ;
      89             : };
      90             : 
      91             : PLUMED_REGISTER_ACTION(FourierTransform,"FOURIER_TRANSFORM")
      92             : 
      93           3 : void FourierTransform::registerKeywords( Keywords& keys ) {
      94           3 :   ActionWithGrid::registerKeywords( keys );
      95           3 :   keys.use("ARG");
      96           6 :   keys.add("optional","FT_TYPE","choose what kind of data you want as output on the grid. Possible values are: ABS = compute the complex modulus of Fourier coefficients (DEFAULT); NORM = compute the norm (i.e. ABS^2) of Fourier coefficients; COMPLEX = store the FFTW complex output on the grid (as a vector).");
      97           6 :   keys.add("compulsory","FOURIER_PARAMETERS","default","what kind of normalization is applied to the output and if the Fourier transform in FORWARD or BACKWARD. This keyword takes the form FOURIER_PARAMETERS=A,B, where A and B can be 0, 1 or -1. The default values are A=1 (no normalization at all) and B=1 (forward FFT). Other possible choices for A are: "
      98             :            "A=-1: normalize by the number of data, "
      99             :            "A=0: normalize by the square root of the number of data (one forward and followed by backward FFT recover the original data). ");
     100           6 :   keys.addOutputComponent("real","FT_TYPE","the real part of the function");
     101           6 :   keys.addOutputComponent("imag","FT_TYPE","the imaginary part of the function");
     102           3 :   keys.setValueDescription("the fourier transform of the input grid");
     103           3 : }
     104             : 
     105           1 : FourierTransform::FourierTransform(const ActionOptions&ao):
     106             :   Action(ao),
     107             :   ActionWithGrid(ao),
     108           1 :   firsttime(true),
     109           1 :   real_output(true),
     110           1 :   store_norm(false),
     111           1 :   fourier_params(2) {
     112           1 :   if( getPntrToArgument(0)->getRank()!=2 ) {
     113           0 :     error("fourier transform currently only works with two dimensional grids");
     114             :   }
     115             : 
     116             :   // Get the type of FT
     117           2 :   parse("FT_TYPE",output_type);
     118           1 :   if (output_type.length()==0) {
     119           0 :     log<<"  keyword FT_TYPE unset. By default output grid will contain REAL Fourier coefficients\n";
     120           2 :   } else if ( output_type=="ABS" || output_type=="abs") {
     121           0 :     log << "  keyword FT_TYPE is '"<< output_type << "' : will compute the MODULUS of Fourier coefficients\n";
     122           2 :   } else if ( output_type=="NORM" || output_type=="norm") {
     123           0 :     log << "  keyword FT_TYPE is '"<< output_type << "' : will compute the NORM of Fourier coefficients\n";
     124           0 :     store_norm=true;
     125           2 :   } else if ( output_type=="COMPLEX" || output_type=="complex" ) {
     126           1 :     log<<"  keyword FT_TYPE is '"<< output_type <<"' : output grid will contain the COMPLEX Fourier coefficients\n";
     127           1 :     real_output=false;
     128             :   } else {
     129           0 :     error("keyword FT_TYPE unrecognized!");
     130             :   }
     131             : 
     132             :   // Normalize output?
     133             :   std::string params_str;
     134           2 :   parse("FOURIER_PARAMETERS",params_str);
     135           1 :   if (params_str=="default") {
     136           0 :     fourier_params.assign( fourier_params.size(), 1 );
     137           0 :     log.printf("  default values of Fourier parameters A=%i, B=%i : the output will NOT be normalized and BACKWARD Fourier transform is computed \n", fourier_params[0],fourier_params[1]);
     138             :   } else {
     139           1 :     std::vector<std::string> fourier_str = Tools::getWords(params_str, "\t\n ,");
     140           1 :     if (fourier_str.size()>2) {
     141           0 :       error("FOURIER_PARAMETERS can take just two values");
     142             :     }
     143           3 :     for (unsigned i=0; i<fourier_str.size(); ++i) {
     144           2 :       Tools::convert(fourier_str[i],fourier_params[i]);
     145           2 :       if (fourier_params[i]>1 || fourier_params[i]<-1) {
     146           0 :         error("values accepted for FOURIER_PARAMETERS are only -1, 1 or 0");
     147             :       }
     148             :     }
     149           1 :     log.printf("  Fourier parameters are A=%i, B=%i \n", fourier_params[0],fourier_params[1]);
     150           1 :   }
     151             : 
     152           1 :   std::vector<unsigned> shape( getPntrToArgument(0)->getRank() );
     153           1 :   if (real_output) {
     154           0 :     addValueWithDerivatives( shape );
     155             :   } else {
     156           1 :     addComponentWithDerivatives( "real", shape );
     157           2 :     addComponentWithDerivatives( "imag", shape );
     158             :   }
     159             : 
     160             :   unsigned dimension = getPntrToArgument(0)->getRank();
     161           1 :   gridtools::ActionWithGrid* ag=dynamic_cast<gridtools::ActionWithGrid*>( getPntrToArgument(0)->getPntrToAction() );
     162           1 :   if( !ag ) {
     163           0 :     error("input action should be a grid");
     164             :   }
     165           1 :   const gridtools::GridCoordinatesObject & gcoords( ag->getGridCoordinatesObject() );
     166           2 :   if( gcoords.getGridType()=="fibonacci" ) {
     167           0 :     error("cannot fourier transform fibonacci grids");
     168             :   }
     169           1 :   std::vector<bool> ipbc( dimension );
     170           3 :   for(unsigned i=0; i<dimension; ++i) {
     171           2 :     ipbc[i] = gcoords.isPeriodic(i);
     172             :   }
     173           1 :   gridcoords.setup( "flat", ipbc, 0, 0.0 );
     174           1 :   checkRead();
     175             : #ifndef __PLUMED_HAS_FFTW
     176             :   error("this feature is only available if you compile PLUMED with FFTW");
     177             : #endif
     178           1 : }
     179             : 
     180           4 : unsigned FourierTransform::getNumberOfDerivatives() {
     181           4 :   return 2;
     182             : }
     183             : 
     184           7 : const gridtools::GridCoordinatesObject& FourierTransform::getGridCoordinatesObject() const {
     185           7 :   return gridcoords;
     186             : }
     187             : 
     188           2 : std::vector<std::string> FourierTransform::getGridCoordinateNames() const {
     189           2 :   gridtools::ActionWithGrid* ag=dynamic_cast<gridtools::ActionWithGrid*>( getPntrToArgument(0)->getPntrToAction() );
     190           2 :   return ag->getGridCoordinateNames();
     191             : }
     192             : 
     193           1 : void FourierTransform::calculate() {
     194           1 :   if( firsttime ) {
     195           1 :     gridtools::ActionWithGrid* ag=dynamic_cast<gridtools::ActionWithGrid*>( getPntrToArgument(0)->getPntrToAction() );
     196           1 :     const gridtools::GridCoordinatesObject & gcoords( ag->getGridCoordinatesObject() );
     197             :     std::vector<double> fspacing;
     198           1 :     std::vector<unsigned> snbins( getGridCoordinatesObject().getDimension() );
     199           1 :     std::vector<std::string> smin( gcoords.getDimension() ), smax( gcoords.getDimension() );
     200           3 :     for(unsigned i=0; i<getGridCoordinatesObject().getDimension(); ++i) {
     201           4 :       smin[i]=gcoords.getMin()[i];
     202           4 :       smax[i]=gcoords.getMax()[i];
     203             :       // Compute k-grid extents
     204             :       double dmin, dmax;
     205           2 :       snbins[i]=gcoords.getNbin(false)[i];
     206           2 :       Tools::convert(smin[i],dmin);
     207           2 :       Tools::convert(smax[i],dmax);
     208           2 :       dmax=2.0*pi*snbins[i]/( dmax - dmin );
     209           2 :       dmin=0.0;
     210           2 :       Tools::convert(dmin,smin[i]);
     211           2 :       Tools::convert(dmax,smax[i]);
     212             :     }
     213           1 :     gridcoords.setBounds( smin, smax, snbins, fspacing );
     214           1 :     firsttime=false;
     215           3 :     for(unsigned i=0; i<getNumberOfComponents(); ++i) {
     216           4 :       getPntrToComponent(i)->setShape( gcoords.getNbin(true) );
     217             :     }
     218           1 :   }
     219             : 
     220             : #ifdef __PLUMED_HAS_FFTW
     221             :   // *** CHECK CORRECT k-GRID BOUNDARIES ***
     222             :   //log<<"Real grid boundaries: \n"
     223             :   //    <<"  min_x: "<<mygrid->getMin()[0]<<"  min_y: "<<mygrid->getMin()[1]<<"\n"
     224             :   //    <<"  max_x: "<<mygrid->getMax()[0]<<"  max_y: "<<mygrid->getMax()[1]<<"\n"
     225             :   //    <<"K-grid boundaries:"<<"\n"
     226             :   //    <<"  min_x: "<<ft_min[0]<<"  min_y: "<<ft_min[1]<<"\n"
     227             :   //    <<"  max_x: "<<ft_max[0]<<"  max_y: "<<ft_max[1]<<"\n";
     228             : 
     229             :   // Get the size of the input data arrays (to allocate FFT data)
     230           1 :   std::vector<unsigned> N_input_data( gridcoords.getNbin(true) );
     231             :   size_t fft_dimension=1;
     232           3 :   for(unsigned i=0; i<N_input_data.size(); ++i) {
     233           2 :     fft_dimension*=static_cast<size_t>( N_input_data[i] );
     234             :   }
     235             :   // FFT arrays
     236           1 :   std::vector<std::complex<double> > input_data(fft_dimension), fft_data(fft_dimension);
     237             : 
     238             :   // Fill real input with the data on the grid
     239             :   Value* arg=getPntrToArgument(0);
     240           1 :   unsigned nargs=arg->getNumberOfValues();
     241           1 :   std::vector<unsigned> ind( arg->getRank() );
     242       10202 :   for (unsigned i=0; i<arg->getNumberOfValues(); ++i) {
     243             :     // Get point indices
     244       10201 :     gridcoords.getIndices(i, ind);
     245             :     // Fill input data in row-major order
     246       10201 :     input_data[ind[0]*N_input_data[0]+ind[1]].real( arg->get( i ) );
     247       10201 :     input_data[ind[0]*N_input_data[0]+ind[1]].imag( 0.0 );
     248             :   }
     249             : 
     250             :   // *** HERE is the only clear limitation: I'm computing explicitly a 2D FT. It should not happen to deal with other than two-dimensional grid ...
     251           1 :   fftw_plan plan_complex = fftw_plan_dft_2d(N_input_data[0], N_input_data[1], reinterpret_cast<fftw_complex*>(&input_data[0]), reinterpret_cast<fftw_complex*>(&fft_data[0]), fourier_params[1], FFTW_ESTIMATE);
     252             : 
     253             :   // Compute FT
     254           1 :   fftw_execute( plan_complex );
     255             : 
     256             :   // Compute the normalization constant
     257             :   double norm=1.0;
     258           3 :   for (unsigned i=0; i<N_input_data.size(); ++i) {
     259           2 :     norm *= pow( N_input_data[i], (1-fourier_params[0])/2 );
     260             :   }
     261             : 
     262             :   // Save FT data to output grid
     263           1 :   std::vector<unsigned> N_out_data ( getGridCoordinatesObject().getNbin(true) );
     264           1 :   std::vector<unsigned> out_ind ( getPntrToArgument(0)->getRank() );
     265       10202 :   for(unsigned i=0; i<getPntrToArgument(0)->getNumberOfValues(); ++i) {
     266       10201 :     gridcoords.getIndices( i, out_ind );
     267       10201 :     if (real_output) {
     268             :       double ft_value;
     269             :       // Compute abs/norm and fix normalization
     270           0 :       if (!store_norm) {
     271           0 :         ft_value=std::abs( fft_data[out_ind[0]*N_out_data[0]+out_ind[1]] / norm );
     272             :       } else {
     273           0 :         ft_value=std::norm( fft_data[out_ind[0]*N_out_data[0]+out_ind[1]] / norm );
     274             :       }
     275             :       // Set the value
     276           0 :       getPntrToComponent(0)->set( i, ft_value);
     277             :     } else {
     278             :       double ft_value_real, ft_value_imag;
     279       10201 :       ft_value_real=fft_data[out_ind[0]*N_out_data[0]+out_ind[1]].real() / norm;
     280       10201 :       ft_value_imag=fft_data[out_ind[0]*N_out_data[0]+out_ind[1]].imag() / norm;
     281             :       // Set values
     282       10201 :       getPntrToComponent(0)->set( i, ft_value_real );
     283       10201 :       getPntrToComponent(1)->set( i, ft_value_imag );
     284             :     }
     285             :   }
     286             : 
     287             :   // Free FFTW stuff
     288           1 :   fftw_destroy_plan(plan_complex);
     289             : #endif
     290           1 : }
     291             : 
     292             : } // end namespace 'gridtools'
     293             : } // end namespace 'PLMD'

Generated by: LCOV version 1.16