LCOV - code coverage report
Current view: top level - isdb - Metainference.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 831 993 83.7 %
Date: 2025-11-25 13:55:50 Functions: 25 27 92.6 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             :    Copyright (c) 2016-2023 The plumed team
       3             :    (see the PEOPLE file at the root of the distribution for a list of names)
       4             : 
       5             :    See http://www.plumed.org for more information.
       6             : 
       7             :    This file is part of plumed, version 2.
       8             : 
       9             :    plumed is free software: you can redistribute it and/or modify
      10             :    it under the terms of the GNU Lesser General Public License as published by
      11             :    the Free Software Foundation, either version 3 of the License, or
      12             :    (at your option) any later version.
      13             : 
      14             :    plumed is distributed in the hope that it will be useful,
      15             :    but WITHOUT ANY WARRANTY; without even the implied warranty of
      16             :    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      17             :    GNU Lesser General Public License for more details.
      18             : 
      19             :    You should have received a copy of the GNU Lesser General Public License
      20             :    along with plumed.  If not, see <http://www.gnu.org/licenses/>.
      21             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      22             : 
      23             : #include "bias/Bias.h"
      24             : #include "core/ActionRegister.h"
      25             : #include "core/PlumedMain.h"
      26             : #include "core/Value.h"
      27             : #include "tools/File.h"
      28             : #include "tools/OpenMP.h"
      29             : #include "tools/Random.h"
      30             : #include "tools/Communicator.h"
      31             : #include <chrono>
      32             : #include <numeric>
      33             : 
      34             : #ifndef M_PI
      35             : #define M_PI           3.14159265358979323846
      36             : #endif
      37             : 
      38             : namespace PLMD {
      39             : namespace isdb {
      40             : 
      41             : //+PLUMEDOC ISDB_BIAS METAINFERENCE
      42             : /*
      43             : Calculates the Metainference energy for a set of experimental data.
      44             : 
      45             : Metainference \cite Bonomi:2016ip is a Bayesian framework
      46             : to model heterogeneous systems by integrating prior information with noisy, ensemble-averaged data.
      47             : Metainference models a system and quantifies the level of noise in the data by considering a set of replicas of the system.
      48             : 
      49             : Calculated experimental data are given in input as ARG while reference experimental values
      50             : can be given either from fixed components of other actions using PARARG or as numbers using
      51             : PARAMETERS. The default behavior is that of averaging the data over the available replicas,
      52             : if this is not wanted the keyword NOENSEMBLE prevent this averaging.
      53             : 
      54             : Metadynamics Metainference \cite Bonomi:2016ge or more in general biased Metainference requires the knowledge of
      55             : biasing potential in order to calculate the weighted average. In this case the value of the bias
      56             : can be provided as the last argument in ARG and adding the keyword REWEIGHT. To avoid the noise
      57             : resulting from the instantaneous value of the bias the weight of each replica can be averaged
      58             : over a give time using the keyword AVERAGING.
      59             : 
      60             : The data can be averaged by using multiple replicas and weighted for a bias if present.
      61             : The functional form of Metainference can be chosen among four variants selected
      62             : with NOISE=GAUSS,MGAUSS,OUTLIERS,MOUTLIERS,GENERIC which correspond to modelling the noise for
      63             : the arguments as a single gaussian common to all the data points, a gaussian per data
      64             : point, a single long-tailed gaussian common to all the data points, a log-tailed
      65             :  gaussian per data point or using two distinct noises as for the most general formulation of Metainference.
      66             : In this latter case the noise of the replica-averaging is gaussian (one per data point) and the noise for
      67             : the comparison with the experimental data can chosen using the keyword LIKELIHOOD
      68             : between gaussian or log-normal (one per data point), furthermore the evolution of the estimated average
      69             : over an infinite number of replicas is driven by DFTILDE.
      70             : 
      71             : As for Metainference theory there are two sigma values: SIGMA_MEAN0 represent the
      72             : error of calculating an average quantity using a finite set of replica and should
      73             : be set as small as possible following the guidelines for replica-averaged simulations
      74             : in the framework of the Maximum Entropy Principle. Alternatively, this can be obtained
      75             : automatically using the internal sigma mean optimization as introduced in \cite Lohr:2017gc
      76             : (OPTSIGMAMEAN=SEM), in this second case sigma_mean is estimated from the maximum standard error
      77             : of the mean either over the simulation or over a defined time using the keyword AVERAGING.
      78             : SIGMA_BIAS is an uncertainty parameter, sampled by a MC algorithm in the bounded interval
      79             : defined by SIGMA_MIN and SIGMA_MAX. The initial value is set at SIGMA0. The MC move is a
      80             : random displacement of maximum value equal to DSIGMA. If the number of data point is
      81             : too large and the acceptance rate drops it is possible to make the MC move over mutually
      82             : exclusive, random subset of size MC_CHUNKSIZE and run more than one move setting MC_STEPS
      83             : in such a way that MC_CHUNKSIZE*MC_STEPS will cover all the data points.
      84             : 
      85             : Calculated and experimental data can be compared modulo a scaling factor and/or an offset
      86             : using SCALEDATA and/or ADDOFFSET, the sampling is obtained by a MC algorithm either using
      87             : a flat or a gaussian prior setting it with SCALE_PRIOR or OFFSET_PRIOR.
      88             : 
      89             : \par Examples
      90             : 
      91             : In the following example we calculate a set of \ref RDC, take the replica-average of
      92             : them and comparing them with a set of experimental values. RDCs are compared with
      93             : the experimental data but for a multiplication factor SCALE that is also sampled by
      94             : MC on-the-fly
      95             : 
      96             : \plumedfile
      97             : RDC ...
      98             : LABEL=rdc
      99             : SCALE=0.0001
     100             : GYROM=-72.5388
     101             : ATOMS1=22,23
     102             : ATOMS2=25,27
     103             : ATOMS3=29,31
     104             : ATOMS4=33,34
     105             : ... RDC
     106             : 
     107             : METAINFERENCE ...
     108             : ARG=rdc.*
     109             : NOISETYPE=MGAUSS
     110             : PARAMETERS=1.9190,2.9190,3.9190,4.9190
     111             : SCALEDATA SCALE0=1 SCALE_MIN=0.1 SCALE_MAX=3 DSCALE=0.01
     112             : SIGMA0=0.01 SIGMA_MIN=0.00001 SIGMA_MAX=3 DSIGMA=0.01
     113             : SIGMA_MEAN0=0.001
     114             : LABEL=spe
     115             : ... METAINFERENCE
     116             : 
     117             : PRINT ARG=spe.bias FILE=BIAS STRIDE=1
     118             : \endplumedfile
     119             : 
     120             : in the following example instead of using one uncertainty parameter per data point we use
     121             : a single uncertainty value in a long-tailed gaussian to take into account for outliers, furthermore
     122             : the data are weighted for the bias applied to other variables of the system.
     123             : 
     124             : \plumedfile
     125             : RDC ...
     126             : LABEL=rdc
     127             : SCALE=0.0001
     128             : GYROM=-72.5388
     129             : ATOMS1=22,23
     130             : ATOMS2=25,27
     131             : ATOMS3=29,31
     132             : ATOMS4=33,34
     133             : ... RDC
     134             : 
     135             : cv1: TORSION ATOMS=1,2,3,4
     136             : cv2: TORSION ATOMS=2,3,4,5
     137             : mm: METAD ARG=cv1,cv2 HEIGHT=0.5 SIGMA=0.3,0.3 PACE=200 BIASFACTOR=8 WALKERS_MPI
     138             : 
     139             : METAINFERENCE ...
     140             : #SETTINGS NREPLICAS=2
     141             : ARG=rdc.*,mm.bias
     142             : REWEIGHT
     143             : NOISETYPE=OUTLIERS
     144             : PARAMETERS=1.9190,2.9190,3.9190,4.9190
     145             : SCALEDATA SCALE0=1 SCALE_MIN=0.1 SCALE_MAX=3 DSCALE=0.01
     146             : SIGMA0=0.01 SIGMA_MIN=0.00001 SIGMA_MAX=3 DSIGMA=0.01
     147             : SIGMA_MEAN0=0.001
     148             : LABEL=spe
     149             : ... METAINFERENCE
     150             : \endplumedfile
     151             : 
     152             : (See also \ref RDC, \ref PBMETAD).
     153             : 
     154             : */
     155             : //+ENDPLUMEDOC
     156             : 
     157             : class Metainference : public bias::Bias {
     158             :   // experimental values
     159             :   std::vector<double> parameters;
     160             :   // noise type
     161             :   unsigned noise_type_;
     162             :   enum { GAUSS, MGAUSS, OUTLIERS, MOUTLIERS, GENERIC };
     163             :   unsigned gen_likelihood_;
     164             :   enum { LIKE_GAUSS, LIKE_LOGN };
     165             :   // scale is data scaling factor
     166             :   // noise type
     167             :   unsigned scale_prior_;
     168             :   enum { SC_GAUSS, SC_FLAT };
     169             :   bool   doscale_;
     170             :   double scale_;
     171             :   double scale_mu_;
     172             :   double scale_min_;
     173             :   double scale_max_;
     174             :   double Dscale_;
     175             :   // scale is data scaling factor
     176             :   // noise type
     177             :   unsigned offset_prior_;
     178             :   bool   dooffset_;
     179             :   double offset_;
     180             :   double offset_mu_;
     181             :   double offset_min_;
     182             :   double offset_max_;
     183             :   double Doffset_;
     184             :   // scale and offset regression
     185             :   bool doregres_zero_;
     186             :   int  nregres_zero_;
     187             :   // sigma is data uncertainty
     188             :   std::vector<double> sigma_;
     189             :   std::vector<double> sigma_min_;
     190             :   std::vector<double> sigma_max_;
     191             :   std::vector<double> Dsigma_;
     192             :   // sigma_mean is uncertainty in the mean estimate
     193             :   std::vector<double> sigma_mean2_;
     194             :   // this is the estimator of the mean value per replica for generic metainference
     195             :   std::vector<double> ftilde_;
     196             :   double Dftilde_;
     197             : 
     198             :   // temperature in kbt
     199             :   double   kbt_;
     200             : 
     201             :   // Monte Carlo stuff
     202             :   std::vector<Random> random;
     203             :   unsigned MCsteps_;
     204             :   long long unsigned MCaccept_;
     205             :   long long unsigned MCacceptScale_;
     206             :   long long unsigned MCacceptFT_;
     207             :   long long unsigned MCtrial_;
     208             :   unsigned MCchunksize_;
     209             : 
     210             :   // output
     211             :   Value*   valueScale;
     212             :   Value*   valueOffset;
     213             :   Value*   valueAccept;
     214             :   Value*   valueAcceptScale;
     215             :   Value*   valueAcceptFT;
     216             :   std::vector<Value*> valueSigma;
     217             :   std::vector<Value*> valueSigmaMean;
     218             :   std::vector<Value*> valueFtilde;
     219             : 
     220             :   // restart
     221             :   unsigned write_stride_;
     222             :   OFile    sfile_;
     223             : 
     224             :   // others
     225             :   bool         firstTime;
     226             :   std::vector<bool> firstTimeW;
     227             :   bool     master;
     228             :   bool     do_reweight_;
     229             :   unsigned do_optsigmamean_;
     230             :   unsigned nrep_;
     231             :   unsigned replica_;
     232             :   unsigned narg;
     233             : 
     234             :   // selector
     235             :   std::string selector_;
     236             : 
     237             :   // optimize sigma mean
     238             :   std::vector< std::vector < std::vector <double> > > sigma_mean2_last_;
     239             :   unsigned optsigmamean_stride_;
     240             :   // optimize sigma max
     241             :   unsigned N_optimized_step_;
     242             :   unsigned optimized_step_;
     243             :   bool sigmamax_opt_done_;
     244             :   std::vector<double> sigma_max_est_;
     245             : 
     246             :   // average weights
     247             :   unsigned                   average_weights_stride_;
     248             :   std::vector< std::vector <double> >  average_weights_;
     249             : 
     250             :   double getEnergyMIGEN(const std::vector<double> &mean, const std::vector<double> &ftilde, const std::vector<double> &sigma,
     251             :                         const double scale, const double offset);
     252             :   double getEnergySP(const std::vector<double> &mean, const std::vector<double> &sigma,
     253             :                      const double scale, const double offset);
     254             :   double getEnergySPE(const std::vector<double> &mean, const std::vector<double> &sigma,
     255             :                       const double scale, const double offset);
     256             :   double getEnergyGJ(const std::vector<double> &mean, const std::vector<double> &sigma,
     257             :                      const double scale, const double offset);
     258             :   double getEnergyGJE(const std::vector<double> &mean, const std::vector<double> &sigma,
     259             :                       const double scale, const double offset);
     260             :   void moveTilde(const std::vector<double> &mean_, double &old_energy);
     261             :   void moveScaleOffset(const std::vector<double> &mean_, double &old_energy);
     262             :   void moveSigmas(const std::vector<double> &mean_, double &old_energy, const unsigned i, const std::vector<unsigned> &indices, bool &breaknow);
     263             :   double doMonteCarlo(const std::vector<double> &mean);
     264             :   void getEnergyForceMIGEN(const std::vector<double> &mean, const std::vector<double> &dmean_x, const std::vector<double> &dmean_b);
     265             :   void getEnergyForceSP(const std::vector<double> &mean, const std::vector<double> &dmean_x, const std::vector<double> &dmean_b);
     266             :   void getEnergyForceSPE(const std::vector<double> &mean, const std::vector<double> &dmean_x, const std::vector<double> &dmean_b);
     267             :   void getEnergyForceGJ(const std::vector<double> &mean, const std::vector<double> &dmean_x, const std::vector<double> &dmean_b);
     268             :   void getEnergyForceGJE(const std::vector<double> &mean, const std::vector<double> &dmean_x, const std::vector<double> &dmean_b);
     269             :   void get_weights(const unsigned iselect, double &weight, double &norm, double &neff);
     270             :   void replica_averaging(const double weight, const double norm, std::vector<double> &mean, std::vector<double> &dmean_b);
     271             :   void get_sigma_mean(const unsigned iselect, const double weight, const double norm, const double neff, const std::vector<double> &mean);
     272             :   void writeStatus();
     273             :   void do_regression_zero(const std::vector<double> &mean);
     274             : 
     275             : public:
     276             :   explicit Metainference(const ActionOptions&);
     277             :   ~Metainference();
     278             :   void calculate() override;
     279             :   void update() override;
     280             :   static void registerKeywords(Keywords& keys);
     281             : };
     282             : 
     283             : 
     284             : PLUMED_REGISTER_ACTION(Metainference,"METAINFERENCE")
     285             : 
     286          34 : void Metainference::registerKeywords(Keywords& keys) {
     287          34 :   Bias::registerKeywords(keys);
     288          34 :   keys.use("ARG");
     289          68 :   keys.add("optional","PARARG","reference values for the experimental data, these can be provided as arguments without derivatives");
     290          68 :   keys.add("optional","PARAMETERS","reference values for the experimental data");
     291          68 :   keys.addFlag("NOENSEMBLE",false,"don't perform any replica-averaging");
     292          68 :   keys.addFlag("REWEIGHT",false,"simple REWEIGHT using the latest ARG as energy");
     293          68 :   keys.add("optional","AVERAGING", "Stride for calculation of averaged weights and sigma_mean");
     294          68 :   keys.add("compulsory","NOISETYPE","MGAUSS","functional form of the noise (GAUSS,MGAUSS,OUTLIERS,MOUTLIERS,GENERIC)");
     295          68 :   keys.add("compulsory","LIKELIHOOD","GAUSS","the likelihood for the GENERIC metainference model, GAUSS or LOGN");
     296          68 :   keys.add("compulsory","DFTILDE","0.1","fraction of sigma_mean used to evolve ftilde");
     297          68 :   keys.addFlag("SCALEDATA",false,"Set to TRUE if you want to sample a scaling factor common to all values and replicas");
     298          68 :   keys.add("compulsory","SCALE0","1.0","initial value of the scaling factor");
     299          68 :   keys.add("compulsory","SCALE_PRIOR","FLAT","either FLAT or GAUSSIAN");
     300          68 :   keys.add("optional","SCALE_MIN","minimum value of the scaling factor");
     301          68 :   keys.add("optional","SCALE_MAX","maximum value of the scaling factor");
     302          68 :   keys.add("optional","DSCALE","maximum MC move of the scaling factor");
     303          68 :   keys.addFlag("ADDOFFSET",false,"Set to TRUE if you want to sample an offset common to all values and replicas");
     304          68 :   keys.add("compulsory","OFFSET0","0.0","initial value of the offset");
     305          68 :   keys.add("compulsory","OFFSET_PRIOR","FLAT","either FLAT or GAUSSIAN");
     306          68 :   keys.add("optional","OFFSET_MIN","minimum value of the offset");
     307          68 :   keys.add("optional","OFFSET_MAX","maximum value of the offset");
     308          68 :   keys.add("optional","DOFFSET","maximum MC move of the offset");
     309          68 :   keys.add("optional","REGRES_ZERO","stride for regression with zero offset");
     310          68 :   keys.add("compulsory","SIGMA0","1.0","initial value of the uncertainty parameter");
     311          68 :   keys.add("compulsory","SIGMA_MIN","0.0","minimum value of the uncertainty parameter");
     312          68 :   keys.add("compulsory","SIGMA_MAX","10.","maximum value of the uncertainty parameter");
     313          68 :   keys.add("optional","DSIGMA","maximum MC move of the uncertainty parameter");
     314          68 :   keys.add("compulsory","OPTSIGMAMEAN","NONE","Set to NONE/SEM to manually set sigma mean, or to estimate it on the fly");
     315          68 :   keys.add("optional","SIGMA_MEAN0","starting value for the uncertainty in the mean estimate");
     316          68 :   keys.add("optional","SIGMA_MAX_STEPS", "Number of steps used to optimise SIGMA_MAX, before that the SIGMA_MAX value is used");
     317          68 :   keys.add("optional","TEMP","the system temperature - this is only needed if code doesn't pass the temperature to plumed");
     318          68 :   keys.add("optional","MC_STEPS","number of MC steps");
     319          68 :   keys.add("optional","MC_CHUNKSIZE","MC chunksize");
     320          68 :   keys.add("optional","STATUS_FILE","write a file with all the data useful for restart/continuation of Metainference");
     321          68 :   keys.add("optional","FMT","specify format for HILLS files (useful for decrease the number of digits in regtests)");
     322          68 :   keys.add("compulsory","WRITE_STRIDE","10000","write the status to a file every N steps, this can be used for restart/continuation");
     323          68 :   keys.add("optional","SELECTOR","name of selector");
     324          68 :   keys.add("optional","NSELECT","range of values for selector [0, N-1]");
     325          34 :   keys.use("RESTART");
     326          68 :   keys.addOutputComponent("sigma",        "default",      "uncertainty parameter");
     327          68 :   keys.addOutputComponent("sigmaMean",    "default",      "uncertainty in the mean estimate");
     328          68 :   keys.addOutputComponent("neff",         "default",      "effective number of replicas");
     329          68 :   keys.addOutputComponent("acceptSigma",  "default",      "MC acceptance for sigma values");
     330          68 :   keys.addOutputComponent("acceptScale",  "SCALEDATA",    "MC acceptance for scale value");
     331          68 :   keys.addOutputComponent("acceptFT",     "GENERIC",      "MC acceptance for general metainference f tilde value");
     332          68 :   keys.addOutputComponent("weight",       "REWEIGHT",     "weights of the weighted average");
     333          68 :   keys.addOutputComponent("biasDer",      "REWEIGHT",     "derivatives with respect to the bias");
     334          68 :   keys.addOutputComponent("scale",        "SCALEDATA",    "scale parameter");
     335          68 :   keys.addOutputComponent("offset",       "ADDOFFSET",    "offset parameter");
     336          68 :   keys.addOutputComponent("ftilde",       "GENERIC",      "ensemble average estimator");
     337          34 : }
     338             : 
     339          32 : Metainference::Metainference(const ActionOptions&ao):
     340             :   PLUMED_BIAS_INIT(ao),
     341          32 :   doscale_(false),
     342          32 :   scale_(1.),
     343          32 :   scale_mu_(0),
     344          32 :   scale_min_(1),
     345          32 :   scale_max_(-1),
     346          32 :   Dscale_(-1),
     347          32 :   dooffset_(false),
     348          32 :   offset_(0.),
     349          32 :   offset_mu_(0),
     350          32 :   offset_min_(1),
     351          32 :   offset_max_(-1),
     352          32 :   Doffset_(-1),
     353          32 :   doregres_zero_(false),
     354          32 :   nregres_zero_(0),
     355          32 :   Dftilde_(0.1),
     356          32 :   random(3),
     357          32 :   MCsteps_(1),
     358          32 :   MCaccept_(0),
     359          32 :   MCacceptScale_(0),
     360          32 :   MCacceptFT_(0),
     361          32 :   MCtrial_(0),
     362          32 :   MCchunksize_(0),
     363          32 :   write_stride_(0),
     364          32 :   firstTime(true),
     365          32 :   do_reweight_(false),
     366          32 :   do_optsigmamean_(0),
     367          32 :   optsigmamean_stride_(0),
     368          32 :   N_optimized_step_(0),
     369          32 :   optimized_step_(0),
     370          32 :   sigmamax_opt_done_(false),
     371          32 :   average_weights_stride_(1) {
     372          32 :   bool noensemble = false;
     373          32 :   parseFlag("NOENSEMBLE", noensemble);
     374             : 
     375             :   // set up replica stuff
     376          32 :   master = (comm.Get_rank()==0);
     377          32 :   if(master) {
     378          24 :     nrep_    = multi_sim_comm.Get_size();
     379          24 :     replica_ = multi_sim_comm.Get_rank();
     380          24 :     if(noensemble) {
     381           0 :       nrep_ = 1;
     382             :     }
     383             :   } else {
     384           8 :     nrep_    = 0;
     385           8 :     replica_ = 0;
     386             :   }
     387          32 :   comm.Sum(&nrep_,1);
     388          32 :   comm.Sum(&replica_,1);
     389             : 
     390          32 :   unsigned nsel = 1;
     391          32 :   parse("SELECTOR", selector_);
     392          64 :   parse("NSELECT", nsel);
     393             :   // do checks
     394          32 :   if(selector_.length()>0 && nsel<=1) {
     395           0 :     error("With SELECTOR active, NSELECT must be greater than 1");
     396             :   }
     397          32 :   if(selector_.length()==0 && nsel>1) {
     398           0 :     error("With NSELECT greater than 1, you must specify SELECTOR");
     399             :   }
     400             : 
     401             :   // initialise firstTimeW
     402          32 :   firstTimeW.resize(nsel, true);
     403             : 
     404             :   // reweight implies a different number of arguments (the latest one must always be the bias)
     405          32 :   parseFlag("REWEIGHT", do_reweight_);
     406          32 :   if(do_reweight_&&nrep_<2) {
     407           0 :     error("REWEIGHT can only be used in parallel with 2 or more replicas");
     408             :   }
     409          32 :   if(!getRestart()) {
     410          56 :     average_weights_.resize(nsel, std::vector<double> (nrep_, 1./static_cast<double>(nrep_)));
     411             :   } else {
     412           8 :     average_weights_.resize(nsel, std::vector<double> (nrep_, 0.));
     413             :   }
     414          32 :   narg = getNumberOfArguments();
     415          32 :   if(do_reweight_) {
     416          16 :     narg--;
     417             :   }
     418             : 
     419          32 :   unsigned averaging=0;
     420          32 :   parse("AVERAGING", averaging);
     421          32 :   if(averaging>0) {
     422           1 :     average_weights_stride_ = averaging;
     423           1 :     optsigmamean_stride_    = averaging;
     424             :   }
     425             : 
     426          64 :   parseVector("PARAMETERS",parameters);
     427          32 :   if(parameters.size()!=static_cast<unsigned>(narg)&&!parameters.empty()) {
     428           0 :     error("Size of PARAMETERS array should be either 0 or the same as of the number of arguments in ARG1");
     429             :   }
     430             : 
     431             :   std::vector<Value*> arg2;
     432          64 :   parseArgumentList("PARARG",arg2);
     433          32 :   if(!arg2.empty()) {
     434           4 :     if(parameters.size()>0) {
     435           0 :       error("It is not possible to use PARARG and PARAMETERS together");
     436             :     }
     437           4 :     if(arg2.size()!=narg) {
     438           0 :       error("Size of PARARG array should be the same as number for arguments in ARG");
     439             :     }
     440        2360 :     for(unsigned i=0; i<arg2.size(); i++) {
     441        2356 :       parameters.push_back(arg2[i]->get());
     442        2356 :       if(arg2[i]->hasDerivatives()==true) {
     443           0 :         error("PARARG can only accept arguments without derivatives");
     444             :       }
     445             :     }
     446             :   }
     447             : 
     448          32 :   if(parameters.size()!=narg) {
     449           0 :     error("PARARG or PARAMETERS arrays should include the same number of elements as the arguments in ARG");
     450             :   }
     451             : 
     452             :   std::string stringa_noise;
     453          64 :   parse("NOISETYPE",stringa_noise);
     454          32 :   if(stringa_noise=="GAUSS") {
     455           3 :     noise_type_ = GAUSS;
     456          29 :   } else if(stringa_noise=="MGAUSS") {
     457           8 :     noise_type_ = MGAUSS;
     458          21 :   } else if(stringa_noise=="OUTLIERS") {
     459          14 :     noise_type_ = OUTLIERS;
     460           7 :   } else if(stringa_noise=="MOUTLIERS") {
     461           4 :     noise_type_ = MOUTLIERS;
     462           3 :   } else if(stringa_noise=="GENERIC") {
     463           3 :     noise_type_ = GENERIC;
     464             :   } else {
     465           0 :     error("Unknown noise type!");
     466             :   }
     467             : 
     468          32 :   if(noise_type_== GENERIC) {
     469             :     std::string stringa_like;
     470           6 :     parse("LIKELIHOOD",stringa_like);
     471           3 :     if(stringa_like=="GAUSS") {
     472           2 :       gen_likelihood_ = LIKE_GAUSS;
     473           1 :     } else if(stringa_like=="LOGN") {
     474           1 :       gen_likelihood_ = LIKE_LOGN;
     475             :     } else {
     476           0 :       error("Unknown likelihood type!");
     477             :     }
     478             : 
     479           6 :     parse("DFTILDE",Dftilde_);
     480             :   }
     481             : 
     482          64 :   parse("WRITE_STRIDE",write_stride_);
     483             :   std::string status_file_name_;
     484          64 :   parse("STATUS_FILE",status_file_name_);
     485          32 :   if(status_file_name_=="") {
     486          64 :     status_file_name_ = "MISTATUS"+getLabel();
     487             :   } else {
     488           0 :     status_file_name_ = status_file_name_+getLabel();
     489             :   }
     490             : 
     491             :   std::string stringa_optsigma;
     492          64 :   parse("OPTSIGMAMEAN", stringa_optsigma);
     493          32 :   if(stringa_optsigma=="NONE") {
     494          30 :     do_optsigmamean_=0;
     495           2 :   } else if(stringa_optsigma=="SEM") {
     496           0 :     do_optsigmamean_=1;
     497           2 :   } else if(stringa_optsigma=="SEM_MAX") {
     498           0 :     do_optsigmamean_=2;
     499             :   }
     500             : 
     501          32 :   unsigned aver_max_steps=0;
     502          32 :   parse("SIGMA_MAX_STEPS", aver_max_steps);
     503          32 :   if(aver_max_steps==0&&do_optsigmamean_==2) {
     504           0 :     aver_max_steps=averaging*2000;
     505             :   }
     506          32 :   if(aver_max_steps>0&&do_optsigmamean_<2) {
     507           0 :     error("SIGMA_MAX_STEPS can only be used together with OPTSIGMAMEAN=SEM_MAX");
     508             :   }
     509          32 :   if(aver_max_steps>0&&do_optsigmamean_==2) {
     510           0 :     N_optimized_step_=aver_max_steps;
     511             :   }
     512          32 :   if(aver_max_steps>0&&aver_max_steps<averaging) {
     513           0 :     error("SIGMA_MAX_STEPS must be greater than AVERAGING");
     514             :   }
     515             : 
     516             :   // resize std::vector for sigma_mean history
     517          32 :   sigma_mean2_last_.resize(nsel);
     518          64 :   for(unsigned i=0; i<nsel; i++) {
     519          32 :     sigma_mean2_last_[i].resize(narg);
     520             :   }
     521             : 
     522             :   std::vector<double> read_sigma_mean_;
     523          32 :   parseVector("SIGMA_MEAN0",read_sigma_mean_);
     524          32 :   if(do_optsigmamean_==0 && read_sigma_mean_.size()==0 && !getRestart()) {
     525           0 :     error("If you don't use OPTSIGMAMEAN and you are not RESTARTING then you MUST SET SIGMA_MEAN0");
     526             :   }
     527             : 
     528          32 :   if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
     529          15 :     if(read_sigma_mean_.size()==narg) {
     530           0 :       sigma_mean2_.resize(narg);
     531           0 :       for(unsigned i=0; i<narg; i++) {
     532           0 :         sigma_mean2_[i]=read_sigma_mean_[i]*read_sigma_mean_[i];
     533             :       }
     534          15 :     } else if(read_sigma_mean_.size()==1) {
     535          15 :       sigma_mean2_.resize(narg,read_sigma_mean_[0]*read_sigma_mean_[0]);
     536           0 :     } else if(read_sigma_mean_.size()==0) {
     537           0 :       sigma_mean2_.resize(narg,0.000001);
     538             :     } else {
     539           0 :       error("SIGMA_MEAN0 can accept either one single value or as many values as the arguments (with NOISETYPE=MGAUSS|MOUTLIERS)");
     540             :     }
     541             :     // set the initial value for the history
     542          30 :     for(unsigned i=0; i<nsel; i++)
     543        2409 :       for(unsigned j=0; j<narg; j++) {
     544        2394 :         sigma_mean2_last_[i][j].push_back(sigma_mean2_[j]);
     545             :       }
     546             :   } else {
     547          17 :     if(read_sigma_mean_.size()==1) {
     548          17 :       sigma_mean2_.resize(1, read_sigma_mean_[0]*read_sigma_mean_[0]);
     549           0 :     } else if(read_sigma_mean_.size()==0) {
     550           0 :       sigma_mean2_.resize(1, 0.000001);
     551             :     } else {
     552           0 :       error("If you want to use more than one SIGMA_MEAN0 you should use NOISETYPE=MGAUSS|MOUTLIERS");
     553             :     }
     554             :     // set the initial value for the history
     555          34 :     for(unsigned i=0; i<nsel; i++)
     556         109 :       for(unsigned j=0; j<narg; j++) {
     557          92 :         sigma_mean2_last_[i][j].push_back(sigma_mean2_[0]);
     558             :       }
     559             :   }
     560             : 
     561          32 :   parseFlag("SCALEDATA", doscale_);
     562          32 :   if(doscale_) {
     563             :     std::string stringa_noise;
     564          24 :     parse("SCALE_PRIOR",stringa_noise);
     565          12 :     if(stringa_noise=="GAUSSIAN") {
     566           0 :       scale_prior_ = SC_GAUSS;
     567          12 :     } else if(stringa_noise=="FLAT") {
     568          12 :       scale_prior_ = SC_FLAT;
     569             :     } else {
     570           0 :       error("Unknown SCALE_PRIOR type!");
     571             :     }
     572          12 :     parse("SCALE0",scale_);
     573          12 :     parse("DSCALE",Dscale_);
     574          12 :     if(Dscale_<0.) {
     575           0 :       error("DSCALE must be set when using SCALEDATA");
     576             :     }
     577          12 :     if(scale_prior_==SC_GAUSS) {
     578           0 :       scale_mu_=scale_;
     579             :     } else {
     580          12 :       parse("SCALE_MIN",scale_min_);
     581          12 :       parse("SCALE_MAX",scale_max_);
     582          12 :       if(scale_max_<scale_min_) {
     583           0 :         error("SCALE_MAX and SCALE_MIN must be set when using SCALE_PRIOR=FLAT");
     584             :       }
     585             :     }
     586             :   }
     587             : 
     588          32 :   parseFlag("ADDOFFSET", dooffset_);
     589          32 :   if(dooffset_) {
     590             :     std::string stringa_noise;
     591          12 :     parse("OFFSET_PRIOR",stringa_noise);
     592           6 :     if(stringa_noise=="GAUSSIAN") {
     593           0 :       offset_prior_ = SC_GAUSS;
     594           6 :     } else if(stringa_noise=="FLAT") {
     595           6 :       offset_prior_ = SC_FLAT;
     596             :     } else {
     597           0 :       error("Unknown OFFSET_PRIOR type!");
     598             :     }
     599           6 :     parse("OFFSET0",offset_);
     600           6 :     parse("DOFFSET",Doffset_);
     601           6 :     if(offset_prior_==SC_GAUSS) {
     602           0 :       offset_mu_=offset_;
     603           0 :       if(Doffset_<0.) {
     604           0 :         error("DOFFSET must be set when using OFFSET_PRIOR=GAUSS");
     605             :       }
     606             :     } else {
     607           6 :       parse("OFFSET_MIN",offset_min_);
     608           6 :       parse("OFFSET_MAX",offset_max_);
     609           6 :       if(Doffset_<0) {
     610           0 :         Doffset_ = 0.05*(offset_max_ - offset_min_);
     611             :       }
     612           6 :       if(offset_max_<offset_min_) {
     613           0 :         error("OFFSET_MAX and OFFSET_MIN must be set when using OFFSET_PRIOR=FLAT");
     614             :       }
     615             :     }
     616             :   }
     617             : 
     618             :   // regression with zero intercept
     619          32 :   parse("REGRES_ZERO", nregres_zero_);
     620          32 :   if(nregres_zero_>0) {
     621             :     // set flag
     622           1 :     doregres_zero_=true;
     623             :     // check if already sampling scale and offset
     624           1 :     if(doscale_) {
     625           0 :       error("REGRES_ZERO and SCALEDATA are mutually exclusive");
     626             :     }
     627           1 :     if(dooffset_) {
     628           0 :       error("REGRES_ZERO and ADDOFFSET are mutually exclusive");
     629             :     }
     630             :   }
     631             : 
     632             :   std::vector<double> readsigma;
     633          32 :   parseVector("SIGMA0",readsigma);
     634          32 :   if((noise_type_!=MGAUSS&&noise_type_!=MOUTLIERS&&noise_type_!=GENERIC)&&readsigma.size()>1) {
     635           0 :     error("If you want to use more than one SIGMA you should use NOISETYPE=MGAUSS|MOUTLIERS|GENERIC");
     636             :   }
     637          32 :   if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
     638          15 :     sigma_.resize(readsigma.size());
     639          15 :     sigma_=readsigma;
     640             :   } else {
     641          17 :     sigma_.resize(1, readsigma[0]);
     642             :   }
     643             : 
     644             :   std::vector<double> readsigma_min;
     645          32 :   parseVector("SIGMA_MIN",readsigma_min);
     646          32 :   if((noise_type_!=MGAUSS&&noise_type_!=MOUTLIERS&&noise_type_!=GENERIC)&&readsigma_min.size()>1) {
     647           0 :     error("If you want to use more than one SIGMA you should use NOISETYPE=MGAUSS|MOUTLIERS|GENERIC");
     648             :   }
     649          32 :   if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
     650          15 :     sigma_min_.resize(readsigma_min.size());
     651          15 :     sigma_min_=readsigma_min;
     652             :   } else {
     653          17 :     sigma_min_.resize(1, readsigma_min[0]);
     654             :   }
     655             : 
     656             :   std::vector<double> readsigma_max;
     657          32 :   parseVector("SIGMA_MAX",readsigma_max);
     658          32 :   if((noise_type_!=MGAUSS&&noise_type_!=MOUTLIERS&&noise_type_!=GENERIC)&&readsigma_max.size()>1) {
     659           0 :     error("If you want to use more than one SIGMA you should use NOISETYPE=MGAUSS|MOUTLIERS|GENERIC");
     660             :   }
     661          32 :   if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
     662          15 :     sigma_max_.resize(readsigma_max.size());
     663          15 :     sigma_max_=readsigma_max;
     664             :   } else {
     665          17 :     sigma_max_.resize(1, readsigma_max[0]);
     666             :   }
     667             : 
     668          32 :   if(sigma_max_.size()!=sigma_min_.size()) {
     669           0 :     error("The number of values for SIGMA_MIN and SIGMA_MAX must be the same");
     670             :   }
     671             : 
     672             :   std::vector<double> read_dsigma;
     673          32 :   parseVector("DSIGMA",read_dsigma);
     674          32 :   if((noise_type_!=MGAUSS&&noise_type_!=MOUTLIERS&&noise_type_!=GENERIC)&&readsigma_max.size()>1) {
     675           0 :     error("If you want to use more than one SIGMA you should use NOISETYPE=MGAUSS|MOUTLIERS|GENERIC");
     676             :   }
     677          32 :   if(read_dsigma.size()>0) {
     678          32 :     Dsigma_.resize(read_dsigma.size());
     679          32 :     Dsigma_=read_dsigma;
     680             :   } else {
     681           0 :     Dsigma_.resize(sigma_max_.size(), -1.);
     682             :     /* in this case Dsigma is initialised after reading the restart file if present */
     683             :   }
     684             : 
     685             :   std::string fmt_;
     686          32 :   parse("FMT",fmt_);
     687             : 
     688             :   // monte carlo stuff
     689          32 :   parse("MC_STEPS",MCsteps_);
     690          32 :   parse("MC_CHUNKSIZE", MCchunksize_);
     691             :   // get temperature
     692          32 :   kbt_ = getkBT();
     693          32 :   if(kbt_==0.0) {
     694           0 :     error("Unless the MD engine passes the temperature to plumed, you must specify it using TEMP");
     695             :   }
     696             : 
     697          32 :   checkRead();
     698             : 
     699             :   // set sigma_bias
     700          32 :   if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
     701          15 :     if(sigma_.size()==1) {
     702          15 :       double tmp = sigma_[0];
     703          15 :       sigma_.resize(narg, tmp);
     704           0 :     } else if(sigma_.size()>1&&sigma_.size()!=narg) {
     705           0 :       error("SIGMA0 can accept either one single value or as many values as the number of arguments (with NOISETYPE=MGAUSS|MOUTLIERS|GENERIC)");
     706             :     }
     707          15 :     if(sigma_min_.size()==1) {
     708          15 :       double tmp = sigma_min_[0];
     709          15 :       sigma_min_.resize(narg, tmp);
     710           0 :     } else if(sigma_min_.size()>1&&sigma_min_.size()!=narg) {
     711           0 :       error("SIGMA_MIN can accept either one single value or as many values as the number of arguments (with NOISETYPE=MGAUSS|MOUTLIERS|GENERIC)");
     712             :     }
     713          15 :     if(sigma_max_.size()==1) {
     714          15 :       double tmp = sigma_max_[0];
     715          15 :       sigma_max_.resize(narg, tmp);
     716           0 :     } else if(sigma_max_.size()>1&&sigma_max_.size()!=narg) {
     717           0 :       error("SIGMA_MAX can accept either one single value or as many values as the number of arguments (with NOISETYPE=MGAUSS|MOUTLIERS|GENERIC)");
     718             :     }
     719          15 :     if(Dsigma_.size()==1) {
     720          15 :       double tmp = Dsigma_[0];
     721          15 :       Dsigma_.resize(narg, tmp);
     722           0 :     } else if(Dsigma_.size()>1&&Dsigma_.size()!=narg) {
     723           0 :       error("DSIGMA can accept either one single value or as many values as the number of arguments (with NOISETYPE=MGAUSS|MOUTLIERS|GENERIC)");
     724             :     }
     725             :   }
     726             : 
     727          32 :   sigma_max_est_.resize(sigma_max_.size(), 0.);
     728             : 
     729          32 :   IFile restart_sfile;
     730          32 :   restart_sfile.link(*this);
     731          32 :   if(getRestart()&&restart_sfile.FileExist(status_file_name_)) {
     732           4 :     firstTime = false;
     733           8 :     for(unsigned i=0; i<nsel; i++) {
     734             :       firstTimeW[i] = false;
     735             :     }
     736           4 :     restart_sfile.open(status_file_name_);
     737           4 :     log.printf("  Restarting from %s\n", status_file_name_.c_str());
     738             :     double dummy;
     739           8 :     if(restart_sfile.scanField("time",dummy)) {
     740             :       // check for syncronisation
     741           4 :       std::vector<double> dummy_time(nrep_,0);
     742           4 :       if(master&&nrep_>1) {
     743           2 :         dummy_time[replica_] = dummy;
     744           2 :         multi_sim_comm.Sum(dummy_time);
     745             :       }
     746           4 :       comm.Sum(dummy_time);
     747           8 :       for(unsigned i=1; i<nrep_; i++) {
     748           4 :         std::string msg = "METAINFERENCE restart files " + status_file_name_ + "  are not in sync";
     749           4 :         if(dummy_time[i]!=dummy_time[0]) {
     750           0 :           plumed_merror(msg);
     751             :         }
     752             :       }
     753             :       // nsel
     754           8 :       for(unsigned i=0; i<sigma_mean2_last_.size(); i++) {
     755             :         std::string msg_i;
     756           4 :         Tools::convert(i,msg_i);
     757             :         // narg
     758           4 :         if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
     759          20 :           for(unsigned j=0; j<narg; ++j) {
     760             :             std::string msg_j;
     761          16 :             Tools::convert(j,msg_j);
     762          16 :             std::string msg = msg_i+"_"+msg_j;
     763             :             double read_sm;
     764          16 :             restart_sfile.scanField("sigmaMean_"+msg,read_sm);
     765          16 :             sigma_mean2_last_[i][j][0] = read_sm*read_sm;
     766             :           }
     767             :         }
     768           4 :         if(noise_type_==GAUSS||noise_type_==OUTLIERS) {
     769             :           double read_sm;
     770             :           std::string msg_j;
     771           0 :           Tools::convert(0,msg_j);
     772           0 :           std::string msg = msg_i+"_"+msg_j;
     773           0 :           restart_sfile.scanField("sigmaMean_"+msg,read_sm);
     774           0 :           for(unsigned j=0; j<narg; j++) {
     775           0 :             sigma_mean2_last_[i][j][0] = read_sm*read_sm;
     776             :           }
     777             :         }
     778             :       }
     779             : 
     780          20 :       for(unsigned i=0; i<sigma_.size(); ++i) {
     781             :         std::string msg;
     782          16 :         Tools::convert(i,msg);
     783          32 :         restart_sfile.scanField("sigma_"+msg,sigma_[i]);
     784             :       }
     785          20 :       for(unsigned i=0; i<sigma_max_.size(); ++i) {
     786             :         std::string msg;
     787          16 :         Tools::convert(i,msg);
     788          16 :         restart_sfile.scanField("sigma_max_"+msg,sigma_max_[i]);
     789          16 :         sigmamax_opt_done_=true;
     790             :       }
     791           4 :       if(noise_type_==GENERIC) {
     792           0 :         for(unsigned i=0; i<ftilde_.size(); ++i) {
     793             :           std::string msg;
     794           0 :           Tools::convert(i,msg);
     795           0 :           restart_sfile.scanField("ftilde_"+msg,ftilde_[i]);
     796             :         }
     797             :       }
     798           4 :       restart_sfile.scanField("scale0_",scale_);
     799           4 :       restart_sfile.scanField("offset0_",offset_);
     800             : 
     801           8 :       for(unsigned i=0; i<nsel; i++) {
     802             :         std::string msg;
     803           4 :         Tools::convert(i,msg);
     804             :         double tmp_w;
     805           4 :         restart_sfile.scanField("weight_"+msg,tmp_w);
     806           4 :         if(master) {
     807           2 :           average_weights_[i][replica_] = tmp_w;
     808           2 :           if(nrep_>1) {
     809           2 :             multi_sim_comm.Sum(&average_weights_[i][0], nrep_);
     810             :           }
     811             :         }
     812           4 :         comm.Sum(&average_weights_[i][0], nrep_);
     813             :       }
     814             : 
     815             :     }
     816           4 :     restart_sfile.scanField();
     817           4 :     restart_sfile.close();
     818             :   }
     819             : 
     820             :   /* If DSIGMA is not yet initialised do it now */
     821        2443 :   for(unsigned i=0; i<sigma_max_.size(); i++)
     822        2411 :     if(Dsigma_[i]==-1) {
     823           0 :       Dsigma_[i] = 0.05*(sigma_max_[i] - sigma_min_[i]);
     824             :     }
     825             : 
     826          32 :   switch(noise_type_) {
     827           3 :   case GENERIC:
     828           3 :     log.printf("  with general metainference ");
     829           3 :     if(gen_likelihood_==LIKE_GAUSS) {
     830           2 :       log.printf(" and a gaussian likelihood\n");
     831           1 :     } else if(gen_likelihood_==LIKE_LOGN) {
     832           1 :       log.printf(" and a log-normal likelihood\n");
     833             :     }
     834           3 :     log.printf("  ensemble average parameter sampled with a step %lf of sigma_mean\n", Dftilde_);
     835             :     break;
     836           3 :   case GAUSS:
     837           3 :     log.printf("  with gaussian noise and a single noise parameter for all the data\n");
     838             :     break;
     839           8 :   case MGAUSS:
     840           8 :     log.printf("  with gaussian noise and a noise parameter for each data point\n");
     841             :     break;
     842          14 :   case OUTLIERS:
     843          14 :     log.printf("  with long tailed gaussian noise and a single noise parameter for all the data\n");
     844             :     break;
     845           4 :   case MOUTLIERS:
     846           4 :     log.printf("  with long tailed gaussian noise and a noise parameter for each data point\n");
     847             :     break;
     848             :   }
     849             : 
     850          32 :   if(doscale_) {
     851             :     // check that the scale value is the same for all replicas
     852          12 :     std::vector<double> dummy_scale(nrep_,0);
     853          12 :     if(master&&nrep_>1) {
     854           6 :       dummy_scale[replica_] = scale_;
     855           6 :       multi_sim_comm.Sum(dummy_scale);
     856             :     }
     857          12 :     comm.Sum(dummy_scale);
     858          24 :     for(unsigned i=1; i<nrep_; i++) {
     859          12 :       std::string msg = "The SCALE value must be the same for all replicas: check your input or restart file";
     860          12 :       if(dummy_scale[i]!=dummy_scale[0]) {
     861           0 :         plumed_merror(msg);
     862             :       }
     863             :     }
     864          12 :     log.printf("  sampling a common scaling factor with:\n");
     865          12 :     log.printf("    initial scale parameter %f\n",scale_);
     866          12 :     if(scale_prior_==SC_GAUSS) {
     867           0 :       log.printf("    gaussian prior with mean %f and width %f\n",scale_mu_,Dscale_);
     868             :     }
     869          12 :     if(scale_prior_==SC_FLAT) {
     870          12 :       log.printf("    flat prior between %f - %f\n",scale_min_,scale_max_);
     871          12 :       log.printf("    maximum MC move of scale parameter %f\n",Dscale_);
     872             :     }
     873             :   }
     874             : 
     875          32 :   if(dooffset_) {
     876             :     // check that the offset value is the same for all replicas
     877           6 :     std::vector<double> dummy_offset(nrep_,0);
     878           6 :     if(master&&nrep_>1) {
     879           0 :       dummy_offset[replica_] = offset_;
     880           0 :       multi_sim_comm.Sum(dummy_offset);
     881             :     }
     882           6 :     comm.Sum(dummy_offset);
     883           6 :     for(unsigned i=1; i<nrep_; i++) {
     884           0 :       std::string msg = "The OFFSET value must be the same for all replicas: check your input or restart file";
     885           0 :       if(dummy_offset[i]!=dummy_offset[0]) {
     886           0 :         plumed_merror(msg);
     887             :       }
     888             :     }
     889           6 :     log.printf("  sampling a common offset with:\n");
     890           6 :     log.printf("    initial offset parameter %f\n",offset_);
     891           6 :     if(offset_prior_==SC_GAUSS) {
     892           0 :       log.printf("    gaussian prior with mean %f and width %f\n",offset_mu_,Doffset_);
     893             :     }
     894           6 :     if(offset_prior_==SC_FLAT) {
     895           6 :       log.printf("    flat prior between %f - %f\n",offset_min_,offset_max_);
     896           6 :       log.printf("    maximum MC move of offset parameter %f\n",Doffset_);
     897             :     }
     898             :   }
     899             : 
     900          32 :   if(doregres_zero_) {
     901           1 :     log.printf("  doing regression with zero intercept with stride: %d\n", nregres_zero_);
     902             :   }
     903             : 
     904          32 :   log.printf("  number of experimental data points %u\n",narg);
     905          32 :   log.printf("  number of replicas %u\n",nrep_);
     906          32 :   log.printf("  initial data uncertainties");
     907        2443 :   for(unsigned i=0; i<sigma_.size(); ++i) {
     908        2411 :     log.printf(" %f", sigma_[i]);
     909             :   }
     910          32 :   log.printf("\n");
     911          32 :   log.printf("  minimum data uncertainties");
     912        2443 :   for(unsigned i=0; i<sigma_.size(); ++i) {
     913        2411 :     log.printf(" %f",sigma_min_[i]);
     914             :   }
     915          32 :   log.printf("\n");
     916          32 :   log.printf("  maximum data uncertainties");
     917        2443 :   for(unsigned i=0; i<sigma_.size(); ++i) {
     918        2411 :     log.printf(" %f",sigma_max_[i]);
     919             :   }
     920          32 :   log.printf("\n");
     921          32 :   log.printf("  maximum MC move of data uncertainties");
     922        2443 :   for(unsigned i=0; i<sigma_.size(); ++i) {
     923        2411 :     log.printf(" %f",Dsigma_[i]);
     924             :   }
     925          32 :   log.printf("\n");
     926          32 :   log.printf("  temperature of the system %f\n",kbt_);
     927          32 :   log.printf("  MC steps %u\n",MCsteps_);
     928          32 :   log.printf("  initial standard errors of the mean");
     929        2443 :   for(unsigned i=0; i<sigma_mean2_.size(); ++i) {
     930        2411 :     log.printf(" %f", std::sqrt(sigma_mean2_[i]));
     931             :   }
     932          32 :   log.printf("\n");
     933             : 
     934          32 :   if(do_reweight_) {
     935          32 :     addComponent("biasDer");
     936          32 :     componentIsNotPeriodic("biasDer");
     937          32 :     addComponent("weight");
     938          32 :     componentIsNotPeriodic("weight");
     939             :   }
     940             : 
     941          64 :   addComponent("neff");
     942          32 :   componentIsNotPeriodic("neff");
     943             : 
     944          32 :   if(doscale_ || doregres_zero_) {
     945          26 :     addComponent("scale");
     946          13 :     componentIsNotPeriodic("scale");
     947          13 :     valueScale=getPntrToComponent("scale");
     948             :   }
     949             : 
     950          32 :   if(dooffset_) {
     951          12 :     addComponent("offset");
     952           6 :     componentIsNotPeriodic("offset");
     953           6 :     valueOffset=getPntrToComponent("offset");
     954             :   }
     955             : 
     956          32 :   if(dooffset_||doscale_) {
     957          36 :     addComponent("acceptScale");
     958          18 :     componentIsNotPeriodic("acceptScale");
     959          18 :     valueAcceptScale=getPntrToComponent("acceptScale");
     960             :   }
     961             : 
     962          32 :   if(noise_type_==GENERIC) {
     963           6 :     addComponent("acceptFT");
     964           3 :     componentIsNotPeriodic("acceptFT");
     965           3 :     valueAcceptFT=getPntrToComponent("acceptFT");
     966             :   }
     967             : 
     968          64 :   addComponent("acceptSigma");
     969          32 :   componentIsNotPeriodic("acceptSigma");
     970          32 :   valueAccept=getPntrToComponent("acceptSigma");
     971             : 
     972          32 :   if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
     973        2409 :     for(unsigned i=0; i<sigma_mean2_.size(); ++i) {
     974             :       std::string num;
     975        2394 :       Tools::convert(i,num);
     976        4788 :       addComponent("sigmaMean-"+num);
     977        2394 :       componentIsNotPeriodic("sigmaMean-"+num);
     978        2394 :       valueSigmaMean.push_back(getPntrToComponent("sigmaMean-"+num));
     979        4788 :       getPntrToComponent("sigmaMean-"+num)->set(std::sqrt(sigma_mean2_[i]));
     980        4788 :       addComponent("sigma-"+num);
     981        2394 :       componentIsNotPeriodic("sigma-"+num);
     982        2394 :       valueSigma.push_back(getPntrToComponent("sigma-"+num));
     983        2394 :       getPntrToComponent("sigma-"+num)->set(sigma_[i]);
     984        2394 :       if(noise_type_==GENERIC) {
     985          12 :         addComponent("ftilde-"+num);
     986           6 :         componentIsNotPeriodic("ftilde-"+num);
     987           6 :         valueFtilde.push_back(getPntrToComponent("ftilde-"+num));
     988             :       }
     989             :     }
     990          15 :   } else {
     991          34 :     addComponent("sigmaMean");
     992          17 :     componentIsNotPeriodic("sigmaMean");
     993          17 :     valueSigmaMean.push_back(getPntrToComponent("sigmaMean"));
     994          34 :     getPntrToComponent("sigmaMean")->set(std::sqrt(sigma_mean2_[0]));
     995          34 :     addComponent("sigma");
     996          17 :     componentIsNotPeriodic("sigma");
     997          17 :     valueSigma.push_back(getPntrToComponent("sigma"));
     998          34 :     getPntrToComponent("sigma")->set(sigma_[0]);
     999             :   }
    1000             : 
    1001             :   // initialize random seed
    1002             :   unsigned iseed;
    1003          32 :   if(master) {
    1004          24 :     auto ts = std::chrono::time_point_cast<std::chrono::nanoseconds>(std::chrono::steady_clock::now()).time_since_epoch().count();
    1005          24 :     iseed = static_cast<unsigned>(ts)+replica_;
    1006             :   } else {
    1007           8 :     iseed = 0;
    1008             :   }
    1009          32 :   comm.Sum(&iseed, 1);
    1010             :   // this is used for ftilde and sigma both the move and the acceptance
    1011             :   // this is different for each replica
    1012          32 :   random[0].setSeed(-iseed);
    1013          32 :   if(doscale_||dooffset_) {
    1014             :     // in this case we want the same seed everywhere
    1015          18 :     auto ts = std::chrono::time_point_cast<std::chrono::nanoseconds>(std::chrono::steady_clock::now()).time_since_epoch().count();
    1016          18 :     iseed = static_cast<unsigned>(ts);
    1017          18 :     if(master&&nrep_>1) {
    1018           6 :       multi_sim_comm.Bcast(iseed,0);
    1019             :     }
    1020          18 :     comm.Bcast(iseed,0);
    1021             :     // this is used for scale and offset sampling and acceptance
    1022          18 :     random[1].setSeed(-iseed);
    1023             :   }
    1024             :   // this is used for random chunk of sigmas, and it is different for each replica
    1025          32 :   if(master) {
    1026          24 :     auto ts = std::chrono::time_point_cast<std::chrono::nanoseconds>(std::chrono::steady_clock::now()).time_since_epoch().count();
    1027          24 :     iseed = static_cast<unsigned>(ts)+replica_;
    1028             :   } else {
    1029           8 :     iseed = 0;
    1030             :   }
    1031          32 :   comm.Sum(&iseed, 1);
    1032          32 :   random[2].setSeed(-iseed);
    1033             : 
    1034             :   // outfile stuff
    1035          32 :   if(write_stride_>0) {
    1036          32 :     sfile_.link(*this);
    1037          32 :     sfile_.open(status_file_name_);
    1038          32 :     if(fmt_.length()>0) {
    1039           1 :       sfile_.fmtField(fmt_);
    1040             :     }
    1041             :   }
    1042             : 
    1043          64 :   log<<"  Bibliography "<<plumed.cite("Bonomi, Camilloni, Cavalli, Vendruscolo, Sci. Adv. 2, e150117 (2016)");
    1044          32 :   if(do_reweight_) {
    1045          32 :     log<<plumed.cite("Bonomi, Camilloni, Vendruscolo, Sci. Rep. 6, 31232 (2016)");
    1046             :   }
    1047          32 :   if(do_optsigmamean_>0) {
    1048           0 :     log<<plumed.cite("Loehr, Jussupow, Camilloni, J. Chem. Phys. 146, 165102 (2017)");
    1049             :   }
    1050          64 :   log<<plumed.cite("Bonomi, Camilloni, Bioinformatics, 33, 3999 (2017)");
    1051          32 :   log<<"\n";
    1052          64 : }
    1053             : 
    1054          64 : Metainference::~Metainference() {
    1055          32 :   if(sfile_.isOpen()) {
    1056          32 :     sfile_.close();
    1057             :   }
    1058         192 : }
    1059             : 
    1060         264 : double Metainference::getEnergySP(const std::vector<double> &mean, const std::vector<double> &sigma,
    1061             :                                   const double scale, const double offset) {
    1062         264 :   const double scale2 = scale*scale;
    1063         264 :   const double sm2    = sigma_mean2_[0];
    1064             :   const double ss2    = sigma[0]*sigma[0] + scale2*sm2;
    1065         264 :   const double sss    = sigma[0]*sigma[0] + sm2;
    1066             : 
    1067             :   double ene = 0.0;
    1068         264 :   #pragma omp parallel num_threads(OpenMP::getNumThreads()) shared(ene)
    1069             :   {
    1070             :     #pragma omp for reduction( + : ene)
    1071             :     for(unsigned i=0; i<narg; ++i) {
    1072             :       const double dev = scale*mean[i]-parameters[i]+offset;
    1073             :       const double a2 = 0.5*dev*dev + ss2;
    1074             :       if(sm2 > 0.0) {
    1075             :         ene += std::log(2.0*a2/(1.0-std::exp(-a2/sm2)));
    1076             :       } else {
    1077             :         ene += std::log(2.0*a2);
    1078             :       }
    1079             :     }
    1080             :   }
    1081             :   // add one single Jeffrey's prior and one normalisation per data point
    1082         264 :   ene += 0.5*std::log(sss) + static_cast<double>(narg)*0.5*std::log(0.5*M_PI*M_PI/ss2);
    1083         264 :   if(doscale_ || doregres_zero_) {
    1084         156 :     ene += 0.5*std::log(sss);
    1085             :   }
    1086         264 :   if(dooffset_) {
    1087           0 :     ene += 0.5*std::log(sss);
    1088             :   }
    1089         264 :   return kbt_ * ene;
    1090             : }
    1091             : 
    1092         144 : double Metainference::getEnergySPE(const std::vector<double> &mean, const std::vector<double> &sigma,
    1093             :                                    const double scale, const double offset) {
    1094         144 :   const double scale2 = scale*scale;
    1095             :   double ene = 0.0;
    1096         144 :   #pragma omp parallel num_threads(OpenMP::getNumThreads()) shared(ene)
    1097             :   {
    1098             :     #pragma omp for reduction( + : ene)
    1099             :     for(unsigned i=0; i<narg; ++i) {
    1100             :       const double sm2 = sigma_mean2_[i];
    1101             :       const double ss2 = sigma[i]*sigma[i] + scale2*sm2;
    1102             :       const double sss = sigma[i]*sigma[i] + sm2;
    1103             :       const double dev = scale*mean[i]-parameters[i]+offset;
    1104             :       const double a2  = 0.5*dev*dev + ss2;
    1105             :       if(sm2 > 0.0) {
    1106             :         ene += 0.5*std::log(sss) + 0.5*std::log(0.5*M_PI*M_PI/ss2) + std::log(2.0*a2/(1.0-std::exp(-a2/sm2)));
    1107             :       } else {
    1108             :         ene += 0.5*std::log(sss) + 0.5*std::log(0.5*M_PI*M_PI/ss2) + std::log(2.0*a2);
    1109             :       }
    1110             :       if(doscale_ || doregres_zero_) {
    1111             :         ene += 0.5*std::log(sss);
    1112             :       }
    1113             :       if(dooffset_) {
    1114             :         ene += 0.5*std::log(sss);
    1115             :       }
    1116             :     }
    1117             :   }
    1118         144 :   return kbt_ * ene;
    1119             : }
    1120             : 
    1121         144 : double Metainference::getEnergyMIGEN(const std::vector<double> &mean, const std::vector<double> &ftilde, const std::vector<double> &sigma,
    1122             :                                      const double scale, const double offset) {
    1123             :   double ene = 0.0;
    1124         144 :   #pragma omp parallel num_threads(OpenMP::getNumThreads()) shared(ene)
    1125             :   {
    1126             :     #pragma omp for reduction( + : ene)
    1127             :     for(unsigned i=0; i<narg; ++i) {
    1128             :       const double inv_sb2  = 1./(sigma[i]*sigma[i]);
    1129             :       const double inv_sm2  = 1./sigma_mean2_[i];
    1130             :       double devb = 0;
    1131             :       if(gen_likelihood_==LIKE_GAUSS) {
    1132             :         devb = scale*ftilde[i]-parameters[i]+offset;
    1133             :       } else if(gen_likelihood_==LIKE_LOGN) {
    1134             :         devb = std::log(scale*ftilde[i]/parameters[i]);
    1135             :       }
    1136             :       double devm = mean[i] - ftilde[i];
    1137             :       // deviation + normalisation + jeffrey
    1138             :       double normb = 0.;
    1139             :       if(gen_likelihood_==LIKE_GAUSS) {
    1140             :         normb = -0.5*std::log(0.5/M_PI*inv_sb2);
    1141             :       } else if(gen_likelihood_==LIKE_LOGN) {
    1142             :         normb = -0.5*std::log(0.5/M_PI*inv_sb2/(parameters[i]*parameters[i]));
    1143             :       }
    1144             :       const double normm         = -0.5*std::log(0.5/M_PI*inv_sm2);
    1145             :       const double jeffreys      = -0.5*std::log(2.*inv_sb2);
    1146             :       ene += 0.5*devb*devb*inv_sb2 + 0.5*devm*devm*inv_sm2 + normb + normm + jeffreys;
    1147             :       if(doscale_ || doregres_zero_) {
    1148             :         ene += jeffreys;
    1149             :       }
    1150             :       if(dooffset_) {
    1151             :         ene += jeffreys;
    1152             :       }
    1153             :     }
    1154             :   }
    1155         144 :   return kbt_ * ene;
    1156             : }
    1157             : 
    1158         108 : double Metainference::getEnergyGJ(const std::vector<double> &mean, const std::vector<double> &sigma,
    1159             :                                   const double scale, const double offset) {
    1160         108 :   const double scale2  = scale*scale;
    1161         108 :   const double inv_s2  = 1./(sigma[0]*sigma[0] + scale2*sigma_mean2_[0]);
    1162         108 :   const double inv_sss = 1./(sigma[0]*sigma[0] + sigma_mean2_[0]);
    1163             : 
    1164             :   double ene = 0.0;
    1165         108 :   #pragma omp parallel num_threads(OpenMP::getNumThreads()) shared(ene)
    1166             :   {
    1167             :     #pragma omp for reduction( + : ene)
    1168             :     for(unsigned i=0; i<narg; ++i) {
    1169             :       double dev = scale*mean[i]-parameters[i]+offset;
    1170             :       ene += 0.5*dev*dev*inv_s2;
    1171             :     }
    1172             :   }
    1173         108 :   const double normalisation = -0.5*std::log(0.5/M_PI*inv_s2);
    1174         108 :   const double jeffreys = -0.5*std::log(2.*inv_sss);
    1175             :   // add Jeffrey's prior in case one sigma for all data points + one normalisation per datapoint
    1176         108 :   ene += jeffreys + static_cast<double>(narg)*normalisation;
    1177         108 :   if(doscale_ || doregres_zero_) {
    1178           0 :     ene += jeffreys;
    1179             :   }
    1180         108 :   if(dooffset_) {
    1181         108 :     ene += jeffreys;
    1182             :   }
    1183             : 
    1184         108 :   return kbt_ * ene;
    1185             : }
    1186             : 
    1187         152 : double Metainference::getEnergyGJE(const std::vector<double> &mean, const std::vector<double> &sigma,
    1188             :                                    const double scale, const double offset) {
    1189         152 :   const double scale2 = scale*scale;
    1190             : 
    1191             :   double ene = 0.0;
    1192         152 :   #pragma omp parallel num_threads(OpenMP::getNumThreads()) shared(ene)
    1193             :   {
    1194             :     #pragma omp for reduction( + : ene)
    1195             :     for(unsigned i=0; i<narg; ++i) {
    1196             :       const double inv_s2  = 1./(sigma[i]*sigma[i] + scale2*sigma_mean2_[i]);
    1197             :       const double inv_sss = 1./(sigma[i]*sigma[i] + sigma_mean2_[i]);
    1198             :       double dev = scale*mean[i]-parameters[i]+offset;
    1199             :       // deviation + normalisation + jeffrey
    1200             :       const double normalisation = -0.5*std::log(0.5/M_PI*inv_s2);
    1201             :       const double jeffreys      = -0.5*std::log(2.*inv_sss);
    1202             :       ene += 0.5*dev*dev*inv_s2 + normalisation + jeffreys;
    1203             :       if(doscale_ || doregres_zero_) {
    1204             :         ene += jeffreys;
    1205             :       }
    1206             :       if(dooffset_) {
    1207             :         ene += jeffreys;
    1208             :       }
    1209             :     }
    1210             :   }
    1211         152 :   return kbt_ * ene;
    1212             : }
    1213             : 
    1214          36 : void Metainference::moveTilde(const std::vector<double> &mean_, double &old_energy) {
    1215          36 :   std::vector<double> new_ftilde(sigma_.size());
    1216          36 :   new_ftilde = ftilde_;
    1217             : 
    1218             :   // change all tildes
    1219         108 :   for(unsigned j=0; j<sigma_.size(); j++) {
    1220          72 :     const double r3 = random[0].Gaussian();
    1221          72 :     const double ds3 = Dftilde_*std::sqrt(sigma_mean2_[j])*r3;
    1222          72 :     new_ftilde[j] = ftilde_[j] + ds3;
    1223             :   }
    1224             :   // calculate new energy
    1225          36 :   double new_energy = getEnergyMIGEN(mean_,new_ftilde,sigma_,scale_,offset_);
    1226             : 
    1227             :   // accept or reject
    1228          36 :   const double delta = ( new_energy - old_energy ) / kbt_;
    1229             :   // if delta is negative always accept move
    1230          36 :   if( delta <= 0.0 ) {
    1231          36 :     old_energy = new_energy;
    1232          36 :     ftilde_ = new_ftilde;
    1233          36 :     MCacceptFT_++;
    1234             :     // otherwise extract random number
    1235             :   } else {
    1236           0 :     const double s = random[0].RandU01();
    1237           0 :     if( s < std::exp(-delta) ) {
    1238           0 :       old_energy = new_energy;
    1239           0 :       ftilde_ = new_ftilde;
    1240           0 :       MCacceptFT_++;
    1241             :     }
    1242             :   }
    1243          36 : }
    1244             : 
    1245         216 : void Metainference::moveScaleOffset(const std::vector<double> &mean_, double &old_energy) {
    1246         216 :   double new_scale = scale_;
    1247             : 
    1248         216 :   if(doscale_) {
    1249         144 :     if(scale_prior_==SC_FLAT) {
    1250         144 :       const double r1 = random[1].Gaussian();
    1251         144 :       const double ds1 = Dscale_*r1;
    1252         144 :       new_scale += ds1;
    1253             :       // check boundaries
    1254         144 :       if(new_scale > scale_max_) {
    1255           0 :         new_scale = 2.0 * scale_max_ - new_scale;
    1256             :       }
    1257         144 :       if(new_scale < scale_min_) {
    1258           0 :         new_scale = 2.0 * scale_min_ - new_scale;
    1259             :       }
    1260             :     } else {
    1261           0 :       const double r1 = random[1].Gaussian();
    1262           0 :       const double ds1 = 0.5*(scale_mu_-new_scale)+Dscale_*std::exp(1)/M_PI*r1;
    1263           0 :       new_scale += ds1;
    1264             :     }
    1265             :   }
    1266             : 
    1267         216 :   double new_offset = offset_;
    1268             : 
    1269         216 :   if(dooffset_) {
    1270          72 :     if(offset_prior_==SC_FLAT) {
    1271          72 :       const double r1 = random[1].Gaussian();
    1272          72 :       const double ds1 = Doffset_*r1;
    1273          72 :       new_offset += ds1;
    1274             :       // check boundaries
    1275          72 :       if(new_offset > offset_max_) {
    1276           0 :         new_offset = 2.0 * offset_max_ - new_offset;
    1277             :       }
    1278          72 :       if(new_offset < offset_min_) {
    1279           0 :         new_offset = 2.0 * offset_min_ - new_offset;
    1280             :       }
    1281             :     } else {
    1282           0 :       const double r1 = random[1].Gaussian();
    1283           0 :       const double ds1 = 0.5*(offset_mu_-new_offset)+Doffset_*std::exp(1)/M_PI*r1;
    1284           0 :       new_offset += ds1;
    1285             :     }
    1286             :   }
    1287             : 
    1288             :   // calculate new energy
    1289             :   double new_energy = 0.;
    1290             : 
    1291         216 :   switch(noise_type_) {
    1292          36 :   case GAUSS:
    1293          36 :     new_energy = getEnergyGJ(mean_,sigma_,new_scale,new_offset);
    1294             :     break;
    1295          48 :   case MGAUSS:
    1296          48 :     new_energy = getEnergyGJE(mean_,sigma_,new_scale,new_offset);
    1297             :     break;
    1298          48 :   case OUTLIERS:
    1299          48 :     new_energy = getEnergySP(mean_,sigma_,new_scale,new_offset);
    1300             :     break;
    1301          48 :   case MOUTLIERS:
    1302          48 :     new_energy = getEnergySPE(mean_,sigma_,new_scale,new_offset);
    1303             :     break;
    1304          36 :   case GENERIC:
    1305          36 :     new_energy = getEnergyMIGEN(mean_,ftilde_,sigma_,new_scale,new_offset);
    1306             :     break;
    1307             :   }
    1308             : 
    1309             :   // for the scale/offset we need to consider the total energy
    1310         216 :   std::vector<double> totenergies(2);
    1311         216 :   if(master) {
    1312         144 :     totenergies[0] = old_energy;
    1313         144 :     totenergies[1] = new_energy;
    1314         144 :     if(nrep_>1) {
    1315          72 :       multi_sim_comm.Sum(totenergies);
    1316             :     }
    1317             :   } else {
    1318          72 :     totenergies[0] = 0;
    1319          72 :     totenergies[1] = 0;
    1320             :   }
    1321         216 :   comm.Sum(totenergies);
    1322             : 
    1323             :   // accept or reject
    1324         216 :   const double delta = ( totenergies[1] - totenergies[0] ) / kbt_;
    1325             :   // if delta is negative always accept move
    1326         216 :   if( delta <= 0.0 ) {
    1327         216 :     old_energy = new_energy;
    1328         216 :     scale_ = new_scale;
    1329         216 :     offset_ = new_offset;
    1330         216 :     MCacceptScale_++;
    1331             :     // otherwise extract random number
    1332             :   } else {
    1333           0 :     double s = random[1].RandU01();
    1334           0 :     if( s < std::exp(-delta) ) {
    1335           0 :       old_energy = new_energy;
    1336           0 :       scale_ = new_scale;
    1337           0 :       offset_ = new_offset;
    1338           0 :       MCacceptScale_++;
    1339             :     }
    1340             :   }
    1341         216 : }
    1342             : 
    1343         280 : void Metainference::moveSigmas(const std::vector<double> &mean_, double &old_energy, const unsigned i, const std::vector<unsigned> &indices, bool &breaknow) {
    1344         280 :   std::vector<double> new_sigma(sigma_.size());
    1345         280 :   new_sigma = sigma_;
    1346             : 
    1347             :   // change MCchunksize_ sigmas
    1348         280 :   if (MCchunksize_ > 0) {
    1349           6 :     if ((MCchunksize_ * i) >= sigma_.size()) {
    1350             :       // This means we are not moving any sigma, so we should break immediately
    1351           0 :       breaknow = true;
    1352             :     }
    1353             : 
    1354             :     // change random sigmas
    1355          12 :     for(unsigned j=0; j<MCchunksize_; j++) {
    1356           6 :       const unsigned shuffle_index = j + MCchunksize_ * i;
    1357           6 :       if (shuffle_index >= sigma_.size()) {
    1358             :         // Going any further will segfault but we should still evaluate the sigmas we changed
    1359             :         break;
    1360             :       }
    1361           6 :       const unsigned index = indices[shuffle_index];
    1362           6 :       const double r2 = random[0].Gaussian();
    1363           6 :       const double ds2 = Dsigma_[index]*r2;
    1364           6 :       new_sigma[index] = sigma_[index] + ds2;
    1365             :       // check boundaries
    1366           6 :       if(new_sigma[index] > sigma_max_[index]) {
    1367           0 :         new_sigma[index] = 2.0 * sigma_max_[index] - new_sigma[index];
    1368             :       }
    1369           6 :       if(new_sigma[index] < sigma_min_[index]) {
    1370           0 :         new_sigma[index] = 2.0 * sigma_min_[index] - new_sigma[index];
    1371             :       }
    1372             :     }
    1373             :   } else {
    1374             :     // change all sigmas
    1375        3224 :     for(unsigned j=0; j<sigma_.size(); j++) {
    1376        2950 :       const double r2 = random[0].Gaussian();
    1377        2950 :       const double ds2 = Dsigma_[j]*r2;
    1378        2950 :       new_sigma[j] = sigma_[j] + ds2;
    1379             :       // check boundaries
    1380        2950 :       if(new_sigma[j] > sigma_max_[j]) {
    1381           0 :         new_sigma[j] = 2.0 * sigma_max_[j] - new_sigma[j];
    1382             :       }
    1383        2950 :       if(new_sigma[j] < sigma_min_[j]) {
    1384           0 :         new_sigma[j] = 2.0 * sigma_min_[j] - new_sigma[j];
    1385             :       }
    1386             :     }
    1387             :   }
    1388             : 
    1389         280 :   if (breaknow) {
    1390             :     // We didnt move any sigmas, so no sense in evaluating anything
    1391             :     return;
    1392             :   }
    1393             : 
    1394             :   // calculate new energy
    1395             :   double new_energy = 0.;
    1396         280 :   switch(noise_type_) {
    1397          36 :   case GAUSS:
    1398          36 :     new_energy = getEnergyGJ(mean_,new_sigma,scale_,offset_);
    1399             :     break;
    1400          52 :   case MGAUSS:
    1401          52 :     new_energy = getEnergyGJE(mean_,new_sigma,scale_,offset_);
    1402             :     break;
    1403         108 :   case OUTLIERS:
    1404         108 :     new_energy = getEnergySP(mean_,new_sigma,scale_,offset_);
    1405             :     break;
    1406          48 :   case MOUTLIERS:
    1407          48 :     new_energy = getEnergySPE(mean_,new_sigma,scale_,offset_);
    1408             :     break;
    1409          36 :   case GENERIC:
    1410          36 :     new_energy = getEnergyMIGEN(mean_,ftilde_,new_sigma,scale_,offset_);
    1411             :     break;
    1412             :   }
    1413             : 
    1414             :   // accept or reject
    1415         280 :   const double delta = ( new_energy - old_energy ) / kbt_;
    1416             :   // if delta is negative always accept move
    1417         280 :   if( delta <= 0.0 ) {
    1418         280 :     old_energy = new_energy;
    1419         280 :     sigma_ = new_sigma;
    1420         280 :     MCaccept_++;
    1421             :     // otherwise extract random number
    1422             :   } else {
    1423           0 :     const double s = random[0].RandU01();
    1424           0 :     if( s < std::exp(-delta) ) {
    1425           0 :       old_energy = new_energy;
    1426           0 :       sigma_ = new_sigma;
    1427           0 :       MCaccept_++;
    1428             :     }
    1429             :   }
    1430             : }
    1431             : 
    1432         280 : double Metainference::doMonteCarlo(const std::vector<double> &mean_) {
    1433             :   // calculate old energy with the updated coordinates
    1434         280 :   double old_energy=0.;
    1435             : 
    1436         280 :   switch(noise_type_) {
    1437          36 :   case GAUSS:
    1438          36 :     old_energy = getEnergyGJ(mean_,sigma_,scale_,offset_);
    1439          36 :     break;
    1440          52 :   case MGAUSS:
    1441          52 :     old_energy = getEnergyGJE(mean_,sigma_,scale_,offset_);
    1442          52 :     break;
    1443         108 :   case OUTLIERS:
    1444         108 :     old_energy = getEnergySP(mean_,sigma_,scale_,offset_);
    1445         108 :     break;
    1446          48 :   case MOUTLIERS:
    1447          48 :     old_energy = getEnergySPE(mean_,sigma_,scale_,offset_);
    1448          48 :     break;
    1449          36 :   case GENERIC:
    1450          36 :     old_energy = getEnergyMIGEN(mean_,ftilde_,sigma_,scale_,offset_);
    1451          36 :     break;
    1452             :   }
    1453             : 
    1454             :   // do not run MC if this is a replica-exchange trial
    1455         280 :   if(!getExchangeStep()) {
    1456             : 
    1457             :     // Create std::vector of random sigma indices
    1458             :     std::vector<unsigned> indices;
    1459         280 :     if (MCchunksize_ > 0) {
    1460          12 :       for (unsigned j=0; j<sigma_.size(); j++) {
    1461           6 :         indices.push_back(j);
    1462             :       }
    1463           6 :       random[2].Shuffle(indices);
    1464             :     }
    1465         280 :     bool breaknow = false;
    1466             : 
    1467             :     // cycle on MC steps
    1468         560 :     for(unsigned i=0; i<MCsteps_; ++i) {
    1469         280 :       MCtrial_++;
    1470             :       // propose move for ftilde
    1471         280 :       if(noise_type_==GENERIC) {
    1472          36 :         moveTilde(mean_, old_energy);
    1473             :       }
    1474             :       // propose move for scale and/or offset
    1475         280 :       if(doscale_||dooffset_) {
    1476         216 :         moveScaleOffset(mean_, old_energy);
    1477             :       }
    1478             :       // propose move for sigma
    1479         280 :       moveSigmas(mean_, old_energy, i, indices, breaknow);
    1480             :       // exit from the loop if this is the case
    1481         280 :       if(breaknow) {
    1482             :         break;
    1483             :       }
    1484             :     }
    1485             : 
    1486             :     /* save the result of the sampling */
    1487             :     /* ftilde */
    1488         280 :     if(noise_type_==GENERIC) {
    1489          36 :       double accept = static_cast<double>(MCacceptFT_) / static_cast<double>(MCtrial_);
    1490          36 :       valueAcceptFT->set(accept);
    1491         108 :       for(unsigned i=0; i<sigma_.size(); i++) {
    1492          72 :         valueFtilde[i]->set(ftilde_[i]);
    1493             :       }
    1494             :     }
    1495             :     /* scale and offset */
    1496         280 :     if(doscale_ || doregres_zero_) {
    1497         150 :       valueScale->set(scale_);
    1498             :     }
    1499         280 :     if(dooffset_) {
    1500          72 :       valueOffset->set(offset_);
    1501             :     }
    1502         280 :     if(doscale_||dooffset_) {
    1503         216 :       double accept = static_cast<double>(MCacceptScale_) / static_cast<double>(MCtrial_);
    1504         216 :       valueAcceptScale->set(accept);
    1505             :     }
    1506             :     /* sigmas */
    1507        3236 :     for(unsigned i=0; i<sigma_.size(); i++) {
    1508        2956 :       valueSigma[i]->set(sigma_[i]);
    1509             :     }
    1510         280 :     double accept = static_cast<double>(MCaccept_) / static_cast<double>(MCtrial_);
    1511         280 :     valueAccept->set(accept);
    1512             :   }
    1513             : 
    1514             :   // here we sum the score over the replicas to get the full metainference score that we save as a bias
    1515         280 :   if(master) {
    1516         206 :     if(nrep_>1) {
    1517          74 :       multi_sim_comm.Sum(old_energy);
    1518             :     }
    1519             :   } else {
    1520          74 :     old_energy=0;
    1521             :   }
    1522         280 :   comm.Sum(old_energy);
    1523             : 
    1524             :   // this is the energy with current coordinates and parameters
    1525         280 :   return old_energy;
    1526             : }
    1527             : 
    1528             : /*
    1529             :    In the following energy-force functions we don't add the normalisation and the jeffreys priors
    1530             :    because they are not needed for the forces, the correct MetaInference energy is the one calculated
    1531             :    in the Monte-Carlo
    1532             : */
    1533             : 
    1534         108 : void Metainference::getEnergyForceSP(const std::vector<double> &mean, const std::vector<double> &dmean_x,
    1535             :                                      const std::vector<double> &dmean_b) {
    1536         108 :   const double scale2 = scale_*scale_;
    1537         108 :   const double sm2    = sigma_mean2_[0];
    1538         108 :   const double ss2    = sigma_[0]*sigma_[0] + scale2*sm2;
    1539         108 :   std::vector<double> f(narg,0);
    1540             : 
    1541         108 :   if(master) {
    1542          84 :     #pragma omp parallel num_threads(OpenMP::getNumThreads())
    1543             :     {
    1544             :       #pragma omp for
    1545             :       for(unsigned i=0; i<narg; ++i) {
    1546             :         const double dev = scale_*mean[i]-parameters[i]+offset_;
    1547             :         const double a2 = 0.5*dev*dev + ss2;
    1548             :         if(sm2 > 0.0) {
    1549             :           const double t = std::exp(-a2/sm2);
    1550             :           const double dt = 1./t;
    1551             :           const double dit = 1./(1.-dt);
    1552             :           f[i] = -scale_*dev*(dit/sm2 + 1./a2);
    1553             :         } else {
    1554             :           f[i] = -scale_*dev*(1./a2);
    1555             :         }
    1556             :       }
    1557             :     }
    1558             :     // collect contribution to forces and energy from other replicas
    1559          84 :     if(nrep_>1) {
    1560          24 :       multi_sim_comm.Sum(&f[0],narg);
    1561             :     }
    1562             :   }
    1563             :   // intra-replica summation
    1564         108 :   comm.Sum(&f[0],narg);
    1565             : 
    1566             :   double w_tmp = 0.;
    1567         720 :   for(unsigned i=0; i<narg; ++i) {
    1568         612 :     setOutputForce(i, kbt_*f[i]*dmean_x[i]);
    1569         612 :     w_tmp += kbt_*f[i]*dmean_b[i];
    1570             :   }
    1571             : 
    1572         108 :   if(do_reweight_) {
    1573          48 :     setOutputForce(narg, w_tmp);
    1574          96 :     getPntrToComponent("biasDer")->set(-w_tmp);
    1575             :   }
    1576         108 : }
    1577             : 
    1578          48 : void Metainference::getEnergyForceSPE(const std::vector<double> &mean, const std::vector<double> &dmean_x,
    1579             :                                       const std::vector<double> &dmean_b) {
    1580          48 :   const double scale2 = scale_*scale_;
    1581          48 :   std::vector<double> f(narg,0);
    1582             : 
    1583          48 :   if(master) {
    1584          24 :     #pragma omp parallel num_threads(OpenMP::getNumThreads())
    1585             :     {
    1586             :       #pragma omp for
    1587             :       for(unsigned i=0; i<narg; ++i) {
    1588             :         const double sm2 = sigma_mean2_[i];
    1589             :         const double ss2 = sigma_[i]*sigma_[i] + scale2*sm2;
    1590             :         const double dev = scale_*mean[i]-parameters[i]+offset_;
    1591             :         const double a2  = 0.5*dev*dev + ss2;
    1592             :         if(sm2 > 0.0) {
    1593             :           const double t   = std::exp(-a2/sm2);
    1594             :           const double dt  = 1./t;
    1595             :           const double dit = 1./(1.-dt);
    1596             :           f[i] = -scale_*dev*(dit/sm2 + 1./a2);
    1597             :         } else {
    1598             :           f[i] = -scale_*dev*(1./a2);
    1599             :         }
    1600             :       }
    1601             :     }
    1602             :     // collect contribution to forces and energy from other replicas
    1603          24 :     if(nrep_>1) {
    1604          24 :       multi_sim_comm.Sum(&f[0],narg);
    1605             :     }
    1606             :   }
    1607          48 :   comm.Sum(&f[0],narg);
    1608             : 
    1609             :   double w_tmp = 0.;
    1610         240 :   for(unsigned i=0; i<narg; ++i) {
    1611         192 :     setOutputForce(i, kbt_ * dmean_x[i] * f[i]);
    1612         192 :     w_tmp += kbt_ * dmean_b[i] *f[i];
    1613             :   }
    1614             : 
    1615          48 :   if(do_reweight_) {
    1616          48 :     setOutputForce(narg, w_tmp);
    1617          96 :     getPntrToComponent("biasDer")->set(-w_tmp);
    1618             :   }
    1619          48 : }
    1620             : 
    1621          36 : void Metainference::getEnergyForceGJ(const std::vector<double> &mean, const std::vector<double> &dmean_x,
    1622             :                                      const std::vector<double> &dmean_b) {
    1623          36 :   const double scale2 = scale_*scale_;
    1624          36 :   double inv_s2=0.;
    1625             : 
    1626          36 :   if(master) {
    1627          36 :     inv_s2 = 1./(sigma_[0]*sigma_[0] + scale2*sigma_mean2_[0]);
    1628          36 :     if(nrep_>1) {
    1629           0 :       multi_sim_comm.Sum(inv_s2);
    1630             :     }
    1631             :   }
    1632          36 :   comm.Sum(inv_s2);
    1633             : 
    1634             :   double w_tmp = 0.;
    1635          36 :   #pragma omp parallel num_threads(OpenMP::getNumThreads()) shared(w_tmp)
    1636             :   {
    1637             :     #pragma omp for reduction( + : w_tmp)
    1638             :     for(unsigned i=0; i<narg; ++i) {
    1639             :       const double dev = scale_*mean[i]-parameters[i]+offset_;
    1640             :       const double mult = dev*scale_*inv_s2;
    1641             :       setOutputForce(i, -kbt_*dmean_x[i]*mult);
    1642             :       w_tmp += kbt_*dmean_b[i]*mult;
    1643             :     }
    1644             :   }
    1645             : 
    1646          36 :   if(do_reweight_) {
    1647           0 :     setOutputForce(narg, -w_tmp);
    1648           0 :     getPntrToComponent("biasDer")->set(w_tmp);
    1649             :   }
    1650          36 : }
    1651             : 
    1652          52 : void Metainference::getEnergyForceGJE(const std::vector<double> &mean, const std::vector<double> &dmean_x,
    1653             :                                       const std::vector<double> &dmean_b) {
    1654          52 :   const double scale2 = scale_*scale_;
    1655          52 :   std::vector<double> inv_s2(sigma_.size(),0.);
    1656             : 
    1657          52 :   if(master) {
    1658        1300 :     for(unsigned i=0; i<sigma_.size(); ++i) {
    1659        1274 :       inv_s2[i] = 1./(sigma_[i]*sigma_[i] + scale2*sigma_mean2_[i]);
    1660             :     }
    1661          26 :     if(nrep_>1) {
    1662          26 :       multi_sim_comm.Sum(&inv_s2[0],sigma_.size());
    1663             :     }
    1664             :   }
    1665          52 :   comm.Sum(&inv_s2[0],sigma_.size());
    1666             : 
    1667             :   double w_tmp = 0.;
    1668          52 :   #pragma omp parallel num_threads(OpenMP::getNumThreads()) shared(w_tmp)
    1669             :   {
    1670             :     #pragma omp for reduction( + : w_tmp)
    1671             :     for(unsigned i=0; i<narg; ++i) {
    1672             :       const double dev  = scale_*mean[i]-parameters[i]+offset_;
    1673             :       const double mult = dev*scale_*inv_s2[i];
    1674             :       setOutputForce(i, -kbt_*dmean_x[i]*mult);
    1675             :       w_tmp += kbt_*dmean_b[i]*mult;
    1676             :     }
    1677             :   }
    1678             : 
    1679          52 :   if(do_reweight_) {
    1680          52 :     setOutputForce(narg, -w_tmp);
    1681         104 :     getPntrToComponent("biasDer")->set(w_tmp);
    1682             :   }
    1683          52 : }
    1684             : 
    1685          36 : void Metainference::getEnergyForceMIGEN(const std::vector<double> &mean, const std::vector<double> &dmean_x, const std::vector<double> &dmean_b) {
    1686          36 :   std::vector<double> inv_s2(sigma_.size(),0.);
    1687          36 :   std::vector<double> dev(sigma_.size(),0.);
    1688          36 :   std::vector<double> dev2(sigma_.size(),0.);
    1689             : 
    1690         108 :   for(unsigned i=0; i<sigma_.size(); ++i) {
    1691          72 :     inv_s2[i]   = 1./sigma_mean2_[i];
    1692          72 :     if(master) {
    1693          72 :       dev[i]  = (mean[i]-ftilde_[i]);
    1694          72 :       dev2[i] = dev[i]*dev[i];
    1695             :     }
    1696             :   }
    1697          36 :   if(master&&nrep_>1) {
    1698           0 :     multi_sim_comm.Sum(&dev[0],dev.size());
    1699           0 :     multi_sim_comm.Sum(&dev2[0],dev2.size());
    1700             :   }
    1701          36 :   comm.Sum(&dev[0],dev.size());
    1702          36 :   comm.Sum(&dev2[0],dev2.size());
    1703             : 
    1704             :   double dene_b = 0.;
    1705          36 :   #pragma omp parallel num_threads(OpenMP::getNumThreads()) shared(dene_b)
    1706             :   {
    1707             :     #pragma omp for reduction( + : dene_b)
    1708             :     for(unsigned i=0; i<narg; ++i) {
    1709             :       const double dene_x  = kbt_*inv_s2[i]*dmean_x[i]*dev[i];
    1710             :       dene_b += kbt_*inv_s2[i]*dmean_b[i]*dev[i];
    1711             :       setOutputForce(i, -dene_x);
    1712             :     }
    1713             :   }
    1714             : 
    1715          36 :   if(do_reweight_) {
    1716           0 :     setOutputForce(narg, -dene_b);
    1717           0 :     getPntrToComponent("biasDer")->set(dene_b);
    1718             :   }
    1719          36 : }
    1720             : 
    1721         280 : void Metainference::get_weights(const unsigned iselect, double &weight, double &norm, double &neff) {
    1722         280 :   const double dnrep = static_cast<double>(nrep_);
    1723             :   // calculate the weights either from BIAS
    1724         280 :   if(do_reweight_) {
    1725         148 :     std::vector<double> bias(nrep_,0);
    1726         148 :     if(master) {
    1727          74 :       bias[replica_] = getArgument(narg);
    1728          74 :       if(nrep_>1) {
    1729          74 :         multi_sim_comm.Sum(&bias[0], nrep_);
    1730             :       }
    1731             :     }
    1732         148 :     comm.Sum(&bias[0], nrep_);
    1733             : 
    1734             :     // accumulate weights
    1735         148 :     const double decay = 1./static_cast<double> (average_weights_stride_);
    1736         148 :     if(!firstTimeW[iselect]) {
    1737         408 :       for(unsigned i=0; i<nrep_; ++i) {
    1738         272 :         const double delta=bias[i]-average_weights_[iselect][i];
    1739         272 :         average_weights_[iselect][i]+=decay*delta;
    1740             :       }
    1741             :     } else {
    1742             :       firstTimeW[iselect] = false;
    1743          36 :       for(unsigned i=0; i<nrep_; ++i) {
    1744          24 :         average_weights_[iselect][i] = bias[i];
    1745             :       }
    1746             :     }
    1747             : 
    1748             :     // set average back into bias and set norm to one
    1749         148 :     const double maxbias = *(std::max_element(average_weights_[iselect].begin(), average_weights_[iselect].end()));
    1750         444 :     for(unsigned i=0; i<nrep_; ++i) {
    1751         296 :       bias[i] = std::exp((average_weights_[iselect][i]-maxbias)/kbt_);
    1752             :     }
    1753             :     // set local weight, norm and weight variance
    1754         148 :     weight = bias[replica_];
    1755             :     double w2=0.;
    1756         444 :     for(unsigned i=0; i<nrep_; ++i) {
    1757         296 :       w2 += bias[i]*bias[i];
    1758         296 :       norm += bias[i];
    1759             :     }
    1760         148 :     neff = norm*norm/w2;
    1761         296 :     getPntrToComponent("weight")->set(weight/norm);
    1762             :   } else {
    1763             :     // or arithmetic ones
    1764         132 :     neff = dnrep;
    1765         132 :     weight = 1.0;
    1766         132 :     norm = dnrep;
    1767             :   }
    1768         280 :   getPntrToComponent("neff")->set(neff);
    1769         280 : }
    1770             : 
    1771         280 : void Metainference::get_sigma_mean(const unsigned iselect, const double weight, const double norm, const double neff, const std::vector<double> &mean) {
    1772         280 :   const double dnrep    = static_cast<double>(nrep_);
    1773         280 :   std::vector<double> sigma_mean2_tmp(sigma_mean2_.size(), 0.);
    1774             : 
    1775         280 :   if(do_optsigmamean_>0) {
    1776             :     // remove first entry of the history std::vector
    1777           0 :     if(sigma_mean2_last_[iselect][0].size()==optsigmamean_stride_&&optsigmamean_stride_>0)
    1778           0 :       for(unsigned i=0; i<narg; ++i) {
    1779           0 :         sigma_mean2_last_[iselect][i].erase(sigma_mean2_last_[iselect][i].begin());
    1780             :       }
    1781             :     /* this is the current estimate of sigma mean for each argument
    1782             :        there is one of this per argument in any case  because it is
    1783             :        the maximum among these to be used in case of GAUSS/OUTLIER */
    1784           0 :     std::vector<double> sigma_mean2_now(narg,0);
    1785           0 :     if(master) {
    1786           0 :       for(unsigned i=0; i<narg; ++i) {
    1787           0 :         sigma_mean2_now[i] = weight*(getArgument(i)-mean[i])*(getArgument(i)-mean[i]);
    1788             :       }
    1789           0 :       if(nrep_>1) {
    1790           0 :         multi_sim_comm.Sum(&sigma_mean2_now[0], narg);
    1791             :       }
    1792             :     }
    1793           0 :     comm.Sum(&sigma_mean2_now[0], narg);
    1794           0 :     for(unsigned i=0; i<narg; ++i) {
    1795           0 :       sigma_mean2_now[i] *= 1.0/(neff-1.)/norm;
    1796             :     }
    1797             : 
    1798             :     // add sigma_mean2 to history
    1799           0 :     if(optsigmamean_stride_>0) {
    1800           0 :       for(unsigned i=0; i<narg; ++i) {
    1801           0 :         sigma_mean2_last_[iselect][i].push_back(sigma_mean2_now[i]);
    1802             :       }
    1803             :     } else {
    1804           0 :       for(unsigned i=0; i<narg; ++i)
    1805           0 :         if(sigma_mean2_now[i] > sigma_mean2_last_[iselect][i][0]) {
    1806           0 :           sigma_mean2_last_[iselect][i][0] = sigma_mean2_now[i];
    1807             :         }
    1808             :     }
    1809             : 
    1810           0 :     if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
    1811           0 :       for(unsigned i=0; i<narg; ++i) {
    1812             :         /* set to the maximum in history std::vector */
    1813           0 :         sigma_mean2_tmp[i] = *max_element(sigma_mean2_last_[iselect][i].begin(), sigma_mean2_last_[iselect][i].end());
    1814             :         /* the standard error of the mean */
    1815           0 :         valueSigmaMean[i]->set(std::sqrt(sigma_mean2_tmp[i]));
    1816           0 :         if(noise_type_==GENERIC) {
    1817           0 :           sigma_min_[i] = std::sqrt(sigma_mean2_tmp[i]);
    1818           0 :           if(sigma_[i] < sigma_min_[i]) {
    1819           0 :             sigma_[i] = sigma_min_[i];
    1820             :           }
    1821             :         }
    1822             :       }
    1823           0 :     } else if(noise_type_==GAUSS||noise_type_==OUTLIERS) {
    1824             :       // find maximum for each data point
    1825             :       std::vector <double> max_values;
    1826           0 :       for(unsigned i=0; i<narg; ++i) {
    1827           0 :         max_values.push_back(*max_element(sigma_mean2_last_[iselect][i].begin(), sigma_mean2_last_[iselect][i].end()));
    1828             :       }
    1829             :       // find maximum across data points
    1830           0 :       const double max_now = *max_element(max_values.begin(), max_values.end());
    1831             :       // set new value
    1832           0 :       sigma_mean2_tmp[0] = max_now;
    1833           0 :       valueSigmaMean[0]->set(std::sqrt(sigma_mean2_tmp[0]));
    1834             :     }
    1835             :     // endif sigma mean optimization
    1836             :     // start sigma max optimization
    1837           0 :     if(do_optsigmamean_>1&&!sigmamax_opt_done_) {
    1838           0 :       for(unsigned i=0; i<sigma_max_.size(); i++) {
    1839           0 :         if(sigma_max_est_[i]<sigma_mean2_tmp[i]&&optimized_step_>optsigmamean_stride_) {
    1840           0 :           sigma_max_est_[i]=sigma_mean2_tmp[i];
    1841             :         }
    1842             :         // ready to set once and for all the value of sigma_max
    1843           0 :         if(optimized_step_==N_optimized_step_) {
    1844           0 :           sigmamax_opt_done_=true;
    1845           0 :           for(unsigned i=0; i<sigma_max_.size(); i++) {
    1846           0 :             sigma_max_[i]=std::sqrt(sigma_max_est_[i]*dnrep);
    1847           0 :             Dsigma_[i] = 0.05*(sigma_max_[i] - sigma_min_[i]);
    1848           0 :             if(sigma_[i]>sigma_max_[i]) {
    1849           0 :               sigma_[i]=sigma_max_[i];
    1850             :             }
    1851             :           }
    1852             :         }
    1853             :       }
    1854           0 :       optimized_step_++;
    1855             :     }
    1856             :     // end sigma max optimization
    1857             :   } else {
    1858         280 :     if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
    1859        2948 :       for(unsigned i=0; i<narg; ++i) {
    1860        2812 :         sigma_mean2_tmp[i] = sigma_mean2_last_[iselect][i][0];
    1861        2812 :         valueSigmaMean[i]->set(std::sqrt(sigma_mean2_tmp[i]));
    1862             :       }
    1863         144 :     } else if(noise_type_==GAUSS||noise_type_==OUTLIERS) {
    1864         144 :       sigma_mean2_tmp[0] = sigma_mean2_last_[iselect][0][0];
    1865         144 :       valueSigmaMean[0]->set(std::sqrt(sigma_mean2_tmp[0]));
    1866             :     }
    1867             :   }
    1868             : 
    1869         280 :   sigma_mean2_ = sigma_mean2_tmp;
    1870         280 : }
    1871             : 
    1872         280 : void Metainference::replica_averaging(const double weight, const double norm, std::vector<double> &mean, std::vector<double> &dmean_b) {
    1873         280 :   if(master) {
    1874        2236 :     for(unsigned i=0; i<narg; ++i) {
    1875        2030 :       mean[i] = weight/norm*getArgument(i);
    1876             :     }
    1877         206 :     if(nrep_>1) {
    1878          74 :       multi_sim_comm.Sum(&mean[0], narg);
    1879             :     }
    1880             :   }
    1881         280 :   comm.Sum(&mean[0], narg);
    1882             :   // set the derivative of the mean with respect to the bias
    1883        3776 :   for(unsigned i=0; i<narg; ++i) {
    1884        3496 :     dmean_b[i] = weight/norm/kbt_*(getArgument(i)-mean[i])/static_cast<double>(average_weights_stride_);
    1885             :   }
    1886             : 
    1887             :   // this is only for generic metainference
    1888         280 :   if(firstTime) {
    1889          28 :     ftilde_ = mean;
    1890          28 :     firstTime = false;
    1891             :   }
    1892         280 : }
    1893             : 
    1894           6 : void Metainference::do_regression_zero(const std::vector<double> &mean) {
    1895             : // parameters[i] = scale_ * mean[i]: find scale_ with linear regression
    1896             :   double num = 0.0;
    1897             :   double den = 0.0;
    1898          48 :   for(unsigned i=0; i<parameters.size(); ++i) {
    1899          42 :     num += mean[i] * parameters[i];
    1900          42 :     den += mean[i] * mean[i];
    1901             :   }
    1902           6 :   if(den>0) {
    1903           6 :     scale_ = num / den;
    1904             :   } else {
    1905           0 :     scale_ = 1.0;
    1906             :   }
    1907           6 : }
    1908             : 
    1909         280 : void Metainference::calculate() {
    1910             :   // get step
    1911         280 :   const long long int step = getStep();
    1912             : 
    1913             :   unsigned iselect = 0;
    1914             :   // set the value of selector for  REM-like stuff
    1915         280 :   if(selector_.length()>0) {
    1916           0 :     iselect = static_cast<unsigned>(plumed.passMap[selector_]);
    1917             :   }
    1918             : 
    1919             :   /* 1) collect weights */
    1920         280 :   double weight = 0.;
    1921         280 :   double neff = 0.;
    1922         280 :   double norm = 0.;
    1923         280 :   get_weights(iselect, weight, norm, neff);
    1924             : 
    1925             :   /* 2) calculate average */
    1926         280 :   std::vector<double> mean(narg,0);
    1927             :   // this is the derivative of the mean with respect to the argument
    1928         280 :   std::vector<double> dmean_x(narg,weight/norm);
    1929             :   // this is the derivative of the mean with respect to the bias
    1930         280 :   std::vector<double> dmean_b(narg,0);
    1931             :   // calculate it
    1932         280 :   replica_averaging(weight, norm, mean, dmean_b);
    1933             : 
    1934             :   /* 3) calculates parameters */
    1935         280 :   get_sigma_mean(iselect, weight, norm, neff, mean);
    1936             : 
    1937             :   // in case of regression with zero intercept, calculate scale
    1938         280 :   if(doregres_zero_ && step%nregres_zero_==0) {
    1939           6 :     do_regression_zero(mean);
    1940             :   }
    1941             : 
    1942             :   /* 4) run monte carlo */
    1943         280 :   double ene = doMonteCarlo(mean);
    1944             : 
    1945             :   // calculate bias and forces
    1946         280 :   switch(noise_type_) {
    1947          36 :   case GAUSS:
    1948          36 :     getEnergyForceGJ(mean, dmean_x, dmean_b);
    1949             :     break;
    1950          52 :   case MGAUSS:
    1951          52 :     getEnergyForceGJE(mean, dmean_x, dmean_b);
    1952             :     break;
    1953         108 :   case OUTLIERS:
    1954         108 :     getEnergyForceSP(mean, dmean_x, dmean_b);
    1955             :     break;
    1956          48 :   case MOUTLIERS:
    1957          48 :     getEnergyForceSPE(mean, dmean_x, dmean_b);
    1958             :     break;
    1959          36 :   case GENERIC:
    1960          36 :     getEnergyForceMIGEN(mean, dmean_x, dmean_b);
    1961             :     break;
    1962             :   }
    1963             : 
    1964         280 :   setBias(ene);
    1965         280 : }
    1966             : 
    1967          32 : void Metainference::writeStatus() {
    1968          32 :   sfile_.rewind();
    1969          32 :   sfile_.printField("time",getTimeStep()*getStep());
    1970             :   //nsel
    1971          64 :   for(unsigned i=0; i<sigma_mean2_last_.size(); i++) {
    1972             :     std::string msg_i,msg_j;
    1973          32 :     Tools::convert(i,msg_i);
    1974             :     std::vector <double> max_values;
    1975             :     //narg
    1976        2518 :     for(unsigned j=0; j<narg; ++j) {
    1977        2486 :       Tools::convert(j,msg_j);
    1978        2486 :       std::string msg = msg_i+"_"+msg_j;
    1979        2486 :       if(noise_type_==MGAUSS||noise_type_==MOUTLIERS||noise_type_==GENERIC) {
    1980        7182 :         sfile_.printField("sigmaMean_"+msg,std::sqrt(*max_element(sigma_mean2_last_[i][j].begin(), sigma_mean2_last_[i][j].end())));
    1981             :       } else {
    1982             :         // find maximum for each data point
    1983         184 :         max_values.push_back(*max_element(sigma_mean2_last_[i][j].begin(), sigma_mean2_last_[i][j].end()));
    1984             :       }
    1985             :     }
    1986          32 :     if(noise_type_==GAUSS||noise_type_==OUTLIERS) {
    1987             :       // find maximum across data points
    1988          17 :       const double max_now = std::sqrt(*max_element(max_values.begin(), max_values.end()));
    1989          17 :       Tools::convert(0,msg_j);
    1990          17 :       std::string msg = msg_i+"_"+msg_j;
    1991          34 :       sfile_.printField("sigmaMean_"+msg, max_now);
    1992             :     }
    1993             :   }
    1994        2443 :   for(unsigned i=0; i<sigma_.size(); ++i) {
    1995             :     std::string msg;
    1996        2411 :     Tools::convert(i,msg);
    1997        4822 :     sfile_.printField("sigma_"+msg,sigma_[i]);
    1998             :   }
    1999        2443 :   for(unsigned i=0; i<sigma_max_.size(); ++i) {
    2000             :     std::string msg;
    2001        2411 :     Tools::convert(i,msg);
    2002        4822 :     sfile_.printField("sigma_max_"+msg,sigma_max_[i]);
    2003             :   }
    2004          32 :   if(noise_type_==GENERIC) {
    2005           9 :     for(unsigned i=0; i<ftilde_.size(); ++i) {
    2006             :       std::string msg;
    2007           6 :       Tools::convert(i,msg);
    2008          12 :       sfile_.printField("ftilde_"+msg,ftilde_[i]);
    2009             :     }
    2010             :   }
    2011          32 :   sfile_.printField("scale0_",scale_);
    2012          32 :   sfile_.printField("offset0_",offset_);
    2013          64 :   for(unsigned i=0; i<average_weights_.size(); i++) {
    2014             :     std::string msg_i;
    2015          32 :     Tools::convert(i,msg_i);
    2016          64 :     sfile_.printField("weight_"+msg_i,average_weights_[i][replica_]);
    2017             :   }
    2018          32 :   sfile_.printField();
    2019          32 :   sfile_.flush();
    2020          32 : }
    2021             : 
    2022         280 : void Metainference::update() {
    2023             :   // write status file
    2024         280 :   if(write_stride_>0&& (getStep()%write_stride_==0 || getCPT()) ) {
    2025          32 :     writeStatus();
    2026             :   }
    2027         280 : }
    2028             : 
    2029             : }
    2030             : }
    2031             : 

Generated by: LCOV version 1.16