LCOV - code coverage report
Current view: top level - isdb - Rescale.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 20 204 9.8 %
Date: 2025-11-25 13:55:50 Functions: 1 12 8.3 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             :    Copyright (c) 2017-2023 The plumed team
       3             :    (see the PEOPLE file at the root of the distribution for a list of names)
       4             : 
       5             :    See http://www.plumed.org for more information.
       6             : 
       7             :    This file is part of plumed, version 2.
       8             : 
       9             :    plumed is free software: you can redistribute it and/or modify
      10             :    it under the terms of the GNU Lesser General Public License as published by
      11             :    the Free Software Foundation, either version 3 of the License, or
      12             :    (at your option) any later version.
      13             : 
      14             :    plumed is distributed in the hope that it will be useful,
      15             :    but WITHOUT ANY WARRANTY; without even the implied warranty of
      16             :    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      17             :    GNU Lesser General Public License for more details.
      18             : 
      19             :    You should have received a copy of the GNU Lesser General Public License
      20             :    along with plumed.  If not, see <http://www.gnu.org/licenses/>.
      21             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      22             : /*
      23             : 
      24             : */
      25             : #include "bias/Bias.h"
      26             : #include "core/ActionRegister.h"
      27             : #include "core/PlumedMain.h"
      28             : #include "core/Value.h"
      29             : #include "tools/File.h"
      30             : #include "tools/Random.h"
      31             : #include "tools/Communicator.h"
      32             : #include <ctime>
      33             : 
      34             : namespace PLMD {
      35             : namespace isdb {
      36             : 
      37             : //+PLUMEDOC ISDB_BIAS RESCALE
      38             : /*
      39             : Scales the value of an another action, being a Collective Variable or a Bias.
      40             : 
      41             : The rescaling factor is determined by a parameter defined on a logarithmic grid of dimension NBIN in the range
      42             : from 1 to MAX_RESCALE. The current value of the rescaling parameter is stored and shared across
      43             : other actions using a \ref SELECTOR. A Monte Carlo procedure is used to update the value
      44             : of the rescaling factor every MC_STRIDE steps of molecular dynamics. Well-tempered metadynamics, defined by the
      45             : parameters W0 and BIASFACTOR, is used to enhance the sampling in the space of the rescaling factor.
      46             : The well-tempered metadynamics bias potential is written to the file BFILE every BSTRIDE steps and read
      47             : when restarting the simulation using the directive \ref RESTART.
      48             : 
      49             : \note
      50             : Additional arguments not to be scaled, one for each bin in the rescaling parameter ladder, can be
      51             : provided at the end of the ARG list. The number of such arguments is specified by the option NOT_RESCALED.
      52             : These arguments will be not be scaled, but they will be
      53             : considered as bias potentials and used in the computation of the Metropolis
      54             : acceptance probability when proposing a move in the rescaling parameter. See example below.
      55             : 
      56             : \note
      57             : If PLUMED is running in a multiple-replica framework (for example using the -multi option in GROMACS),
      58             : the arguments will be summed across replicas, unless the NOT_SHARED option is used. Also, the value of the
      59             : \ref SELECTOR will be shared and thus will be the same in all replicas.
      60             : 
      61             : \par Examples
      62             : 
      63             : In this example we use \ref RESCALE to implement a simulated-tempering like approach.
      64             : The total potential energy of the system is scaled by a parameter defined on a logarithmic grid
      65             : of 5 bins in the range from 1 to 1.5.
      66             : A well-tempered metadynamics bias potential is used to ensure diffusion in the space of the rescaling
      67             : parameter.
      68             : 
      69             : \plumedfile
      70             : ene: ENERGY
      71             : 
      72             : SELECTOR NAME=GAMMA VALUE=0
      73             : 
      74             : RESCALE ...
      75             : LABEL=res ARG=ene TEMP=300
      76             : SELECTOR=GAMMA MAX_RESCALE=1.5 NBIN=5
      77             : W0=1000 BIASFACTOR=100.0 BSTRIDE=2000 BFILE=bias.dat
      78             : ...
      79             : 
      80             : PRINT FILE=COLVAR ARG=* STRIDE=100
      81             : \endplumedfile
      82             : 
      83             : In this second example, we add to the simulated-tempering approach introduced above
      84             : one Parallel Bias metadynamics simulation (see \ref PBMETAD) for each value of the rescaling parameter.
      85             : At each moment of the simulation, only one of the \ref PBMETAD
      86             : actions is activated, based on the current value of the associated \ref SELECTOR.
      87             : The \ref PBMETAD bias potentials are not scaled, but just used in the calculation of
      88             : the Metropolis acceptance probability when proposing a move in the rescaling parameter.
      89             : 
      90             : \plumedfile
      91             : ene: ENERGY
      92             : d: DISTANCE ATOMS=1,2
      93             : 
      94             : SELECTOR NAME=GAMMA VALUE=0
      95             : 
      96             : pbmetad0: PBMETAD ARG=d SELECTOR=GAMMA SELECTOR_ID=0 SIGMA=0.1 PACE=500 HEIGHT=1 BIASFACTOR=8 FILE=HILLS.0
      97             : pbmetad1: PBMETAD ARG=d SELECTOR=GAMMA SELECTOR_ID=1 SIGMA=0.1 PACE=500 HEIGHT=1 BIASFACTOR=8 FILE=HILLS.1
      98             : pbmetad2: PBMETAD ARG=d SELECTOR=GAMMA SELECTOR_ID=2 SIGMA=0.1 PACE=500 HEIGHT=1 BIASFACTOR=8 FILE=HILLS.2
      99             : pbmetad3: PBMETAD ARG=d SELECTOR=GAMMA SELECTOR_ID=3 SIGMA=0.1 PACE=500 HEIGHT=1 BIASFACTOR=8 FILE=HILLS.3
     100             : pbmetad4: PBMETAD ARG=d SELECTOR=GAMMA SELECTOR_ID=4 SIGMA=0.1 PACE=500 HEIGHT=1 BIASFACTOR=8 FILE=HILLS.4
     101             : 
     102             : RESCALE ...
     103             : LABEL=res TEMP=300
     104             : ARG=ene,pbmetad0.bias,pbmetad1.bias,pbmetad2.bias,pbmetad3.bias,pbmetad4.bias
     105             : SELECTOR=GAMMA MAX_RESCALE=1.5 NOT_RESCALED=5 NBIN=5
     106             : W0=1000 BIASFACTOR=100.0 BSTRIDE=2000 BFILE=bias.dat
     107             : ...
     108             : 
     109             : PRINT FILE=COLVAR ARG=* STRIDE=100
     110             : \endplumedfile
     111             : 
     112             : 
     113             : 
     114             : */
     115             : //+ENDPLUMEDOC
     116             : 
     117             : class Rescale : public bias::Bias {
     118             :   // gamma parameter
     119             :   std::vector<double> gamma_;
     120             :   double         w0_;
     121             :   double         biasf_;
     122             :   std::vector<double> bias_;
     123             :   std::vector<double> expo_;
     124             :   std::vector<unsigned> shared_;
     125             :   unsigned nores_;
     126             :   // bias
     127             :   unsigned int   Biasstride_;
     128             :   unsigned int   Biaspace_;
     129             :   std::string         Biasfilename_;
     130             :   bool           first_bias_;
     131             :   OFile          Biasfile_;
     132             :   // temperature in kbt
     133             :   double kbt_;
     134             :   // Monte Carlo stuff
     135             :   unsigned MCsteps_;
     136             :   unsigned MCstride_;
     137             :   long long int MCfirst_;
     138             :   long long unsigned MCaccgamma_;
     139             :   // replica stuff
     140             :   unsigned nrep_;
     141             :   unsigned replica_;
     142             :   // selector
     143             :   std::string selector_;
     144             : 
     145             :   // Monte Carlo
     146             :   void doMonteCarlo(unsigned igamma, double oldE, const std::vector<double> & args, const std::vector<double> & bargs);
     147             :   unsigned proposeMove(unsigned x, unsigned xmin, unsigned xmax);
     148             :   bool doAccept(double oldE, double newE);
     149             :   // read and print bias
     150             :   void read_bias();
     151             :   void print_bias(long long int step);
     152             : 
     153             : public:
     154             :   explicit Rescale(const ActionOptions&);
     155             :   ~Rescale();
     156             :   void calculate();
     157             :   static void registerKeywords(Keywords& keys);
     158             : };
     159             : 
     160             : 
     161             : PLUMED_REGISTER_ACTION(Rescale,"RESCALE")
     162             : 
     163           2 : void Rescale::registerKeywords(Keywords& keys) {
     164           2 :   Bias::registerKeywords(keys);
     165           2 :   keys.use("ARG");
     166           4 :   keys.add("compulsory","TEMP","temperature");
     167           4 :   keys.add("compulsory","SELECTOR", "name of the SELECTOR used for rescaling");
     168           4 :   keys.add("compulsory","MAX_RESCALE","maximum values for rescaling");
     169           4 :   keys.add("compulsory","NBIN","number of bins for gamma grid");
     170           4 :   keys.add("compulsory","W0", "initial bias height");
     171           4 :   keys.add("compulsory","BIASFACTOR", "bias factor");
     172           4 :   keys.add("compulsory","BSTRIDE", "stride for writing bias");
     173           4 :   keys.add("compulsory","BFILE", "file name for bias");
     174           4 :   keys.add("optional","NOT_SHARED",   "list of arguments (from 1 to N) not summed across replicas");
     175           4 :   keys.add("optional","NOT_RESCALED", "these last N arguments will not be scaled");
     176           4 :   keys.add("optional","MC_STEPS","number of MC steps");
     177           4 :   keys.add("optional","MC_STRIDE","MC stride");
     178           4 :   keys.add("optional","PACE", "Pace for adding bias, in MC stride unit");
     179           4 :   keys.addOutputComponent("igamma",  "default","gamma parameter");
     180           4 :   keys.addOutputComponent("accgamma","default","MC acceptance for gamma");
     181           4 :   keys.addOutputComponent("wtbias",  "default","well-tempered bias");
     182           2 : }
     183             : 
     184           0 : Rescale::Rescale(const ActionOptions&ao):
     185             :   PLUMED_BIAS_INIT(ao),
     186           0 :   nores_(0), Biaspace_(1), first_bias_(true),
     187           0 :   MCsteps_(1), MCstride_(1), MCfirst_(-1), MCaccgamma_(0) {
     188             :   // set up replica stuff
     189           0 :   if(comm.Get_rank()==0) {
     190           0 :     nrep_    = multi_sim_comm.Get_size();
     191           0 :     replica_ = multi_sim_comm.Get_rank();
     192             :   } else {
     193           0 :     nrep_    = 0;
     194           0 :     replica_ = 0;
     195             :   }
     196           0 :   comm.Sum(&nrep_,1);
     197           0 :   comm.Sum(&replica_,1);
     198             : 
     199             :   // wt-parameters
     200           0 :   parse("W0", w0_);
     201           0 :   parse("BIASFACTOR", biasf_);
     202             : 
     203             :   // selector name
     204           0 :   parse("SELECTOR", selector_);
     205             : 
     206             :   // number of bins for gamma ladder
     207             :   unsigned nbin;
     208           0 :   parse("NBIN", nbin);
     209             : 
     210             :   // number of bias
     211           0 :   parse("NOT_RESCALED", nores_);
     212           0 :   if(nores_>0 && nores_!=nbin) {
     213           0 :     error("The number of non scaled arguments must be equal to either 0 or the number of bins");
     214             :   }
     215             : 
     216             :   // maximum value of rescale
     217             :   std::vector<double> max_rescale;
     218           0 :   parseVector("MAX_RESCALE", max_rescale);
     219             :   // check dimension of max_rescale
     220           0 :   if(max_rescale.size()!=(getNumberOfArguments()-nores_)) {
     221           0 :     error("Size of MAX_RESCALE array must be equal to the number of arguments that will to be scaled");
     222             :   }
     223             : 
     224             :   // calculate exponents
     225           0 :   double igamma_max = static_cast<double>(nbin);
     226           0 :   for(unsigned i=0; i<max_rescale.size(); ++i) {
     227           0 :     expo_.push_back(std::log(max_rescale[i])/std::log(igamma_max));
     228             :   }
     229             : 
     230             :   // allocate gamma grid and set bias to zero
     231           0 :   for(unsigned i=0; i<nbin; ++i) {
     232             :     // bias grid
     233           0 :     bias_.push_back(0.0);
     234             :     // gamma ladder
     235           0 :     double gamma = std::exp( static_cast<double>(i) / static_cast<double>(nbin-1) * std::log(igamma_max) );
     236           0 :     gamma_.push_back(gamma);
     237             :   }
     238             :   // print bias to file
     239           0 :   parse("BSTRIDE", Biasstride_);
     240           0 :   parse("BFILE",   Biasfilename_);
     241             : 
     242             :   // create vectors of shared arguments
     243             :   // by default they are all shared
     244           0 :   for(unsigned i=0; i<getNumberOfArguments(); ++i) {
     245           0 :     shared_.push_back(1);
     246             :   }
     247             :   // share across replicas or not
     248             :   std::vector<unsigned> not_shared;
     249           0 :   parseVector("NOT_SHARED", not_shared);
     250             :   // and change the non-shared
     251           0 :   for(unsigned i=0; i<not_shared.size(); ++i) {
     252           0 :     if((not_shared[i]-1)>=(getNumberOfArguments()-nores_) && nrep_>1) {
     253           0 :       error("NOT_RESCALED args must always be shared when using multiple replicas");
     254             :     }
     255           0 :     if((not_shared[i]-1)>=getNumberOfArguments()) {
     256           0 :       error("NOT_SHARED args should be lower than total number of arguments");
     257             :     }
     258           0 :     shared_[not_shared[i]-1] = 0;
     259             :   }
     260             : 
     261             :   // monte carlo stuff
     262           0 :   parse("MC_STEPS",MCsteps_);
     263           0 :   parse("MC_STRIDE",MCstride_);
     264             :   // adjust for multiple-time steps
     265           0 :   MCstride_ *= getStride();
     266             :   // read bias deposition pace
     267           0 :   parse("PACE", Biaspace_);
     268             :   // multiply by MCstride
     269           0 :   Biaspace_ *= MCstride_;
     270             : 
     271             :   // get temperature
     272           0 :   kbt_=getkBT();
     273             : 
     274           0 :   checkRead();
     275             : 
     276           0 :   log.printf("  temperature of the system in energy unit %f\n",kbt_);
     277           0 :   log.printf("  name of the SELECTOR use for this action %s\n",selector_.c_str());
     278           0 :   log.printf("  number of bins in grid %u\n",nbin);
     279           0 :   log.printf("  number of arguments that will not be scaled %u\n",nores_);
     280           0 :   if(nrep_>1) {
     281           0 :     log<<"  number of arguments that will not be summed across replicas "<<not_shared.size()<<"\n";
     282             :   }
     283           0 :   log.printf("  biasfactor %f\n",biasf_);
     284           0 :   log.printf("  initial hills height %f\n",w0_);
     285           0 :   log.printf("  stride to write bias to file %u\n",Biasstride_);
     286           0 :   log.printf("  write bias to file : %s\n",Biasfilename_.c_str());
     287           0 :   log.printf("  number of replicas %u\n",nrep_);
     288           0 :   log.printf("  number of MC steps %d\n",MCsteps_);
     289           0 :   log.printf("  do MC every %d steps\n", MCstride_);
     290           0 :   log.printf("\n");
     291             : 
     292           0 :   log << " Bibliography" << plumed.cite("Bonomi, Camilloni, Bioinformatics, 33, 3999 (2017)") << "\n";
     293             : 
     294             : 
     295             :   // add components
     296           0 :   addComponent("igamma");
     297           0 :   componentIsNotPeriodic("igamma");
     298           0 :   addComponent("accgamma");
     299           0 :   componentIsNotPeriodic("accgamma");
     300           0 :   addComponent("wtbias");
     301           0 :   componentIsNotPeriodic("wtbias");
     302             : 
     303             :   // initialize random seed
     304           0 :   srand (time(NULL));
     305             : 
     306             :   // read bias if restarting
     307           0 :   if(getRestart()) {
     308           0 :     read_bias();
     309             :   }
     310           0 : }
     311             : 
     312           0 : Rescale::~Rescale() {
     313           0 :   Biasfile_.close();
     314           0 : }
     315             : 
     316           0 : void Rescale::read_bias() {
     317             : // open file
     318             :   auto ifile=Tools::make_unique<IFile>();
     319           0 :   ifile->link(*this);
     320           0 :   if(ifile->FileExist(Biasfilename_)) {
     321           0 :     ifile->open(Biasfilename_);
     322             :     // read all the lines, store last value of bias
     323             :     double MDtime;
     324           0 :     while(ifile->scanField("MD_time",MDtime)) {
     325           0 :       for(unsigned i=0; i<bias_.size(); ++i) {
     326             :         // convert i to string
     327           0 :         std::stringstream ss;
     328             :         ss << i;
     329             :         // label
     330           0 :         std::string label = "b" + ss.str();
     331             :         // read entry
     332           0 :         ifile->scanField(label, bias_[i]);
     333           0 :       }
     334             :       // new line
     335           0 :       ifile->scanField();
     336             :     }
     337           0 :     ifile->close();
     338             :   } else {
     339           0 :     error("Cannot find bias file "+Biasfilename_+"\n");
     340             :   }
     341           0 : }
     342             : 
     343           0 : unsigned Rescale::proposeMove(unsigned x, unsigned xmin, unsigned xmax) {
     344           0 :   int xmin_i = static_cast<int>(xmin);
     345           0 :   int xmax_i = static_cast<int>(xmax);
     346             :   int dx;
     347           0 :   int r = rand() % 2;
     348           0 :   if( r % 2 == 0 ) {
     349             :     dx = +1;
     350             :   } else {
     351             :     dx = -1;
     352             :   }
     353             : // new index, integer
     354           0 :   int x_new = static_cast<int>(x) + dx;
     355             : // check boundaries
     356           0 :   if(x_new >= xmax_i) {
     357           0 :     x_new = xmax_i-1;
     358             :   }
     359             :   if(x_new <  xmin_i) {
     360             :     x_new = xmin_i;
     361             :   }
     362           0 :   return static_cast<unsigned>(x_new);
     363             : }
     364             : 
     365           0 : bool Rescale::doAccept(double oldE, double newE) {
     366             :   bool accept = false;
     367             :   // calculate delta energy
     368           0 :   double delta = ( newE - oldE ) / kbt_;
     369             :   // if delta is negative always accept move
     370           0 :   if( delta < 0.0 ) {
     371             :     accept = true;
     372             :   } else {
     373             :     // otherwise extract random number
     374           0 :     double s = static_cast<double>(rand()) / RAND_MAX;
     375           0 :     if( s < std::exp(-delta) ) {
     376             :       accept = true;
     377             :     }
     378             :   }
     379           0 :   return accept;
     380             : }
     381             : 
     382           0 : void Rescale::doMonteCarlo(unsigned igamma, double oldE,
     383             :                            const std::vector<double> & args, const std::vector<double> & bargs) {
     384             :   double oldB, newB;
     385             : 
     386             : // cycle on MC steps
     387           0 :   for(unsigned i=0; i<MCsteps_; ++i) {
     388             :     // propose move in igamma
     389           0 :     unsigned new_igamma = proposeMove(igamma, 0, gamma_.size());
     390             :     // calculate new energy
     391             :     double newE = 0.0;
     392           0 :     for(unsigned j=0; j<args.size(); ++j) {
     393             :       // calculate energy term
     394           0 :       double fact = 1.0/pow(gamma_[new_igamma], expo_[j]) - 1.0;
     395           0 :       newE += args[j] * fact;
     396             :     }
     397             :     // calculate contributions from non-rescaled terms
     398           0 :     if(bargs.size()>0) {
     399           0 :       oldB = bias_[igamma]+bargs[igamma];
     400           0 :       newB = bias_[new_igamma]+bargs[new_igamma];
     401             :     } else {
     402           0 :       oldB = bias_[igamma];
     403           0 :       newB = bias_[new_igamma];
     404             :     }
     405             :     // accept or reject
     406           0 :     bool accept = doAccept(oldE+oldB, newE+newB);
     407           0 :     if(accept) {
     408           0 :       igamma = new_igamma;
     409             :       oldE = newE;
     410           0 :       MCaccgamma_++;
     411             :     }
     412             :   }
     413             : // send values of gamma to all replicas
     414           0 :   if(comm.Get_rank()==0) {
     415           0 :     if(multi_sim_comm.Get_rank()!=0) {
     416           0 :       igamma = 0;
     417             :     }
     418           0 :     multi_sim_comm.Sum(&igamma, 1);
     419             :   } else {
     420           0 :     igamma = 0;
     421             :   }
     422             : // local communication
     423           0 :   comm.Sum(&igamma, 1);
     424             : 
     425             : // set the value of gamma into passMap
     426           0 :   plumed.passMap[selector_]=static_cast<double>(igamma);
     427           0 : }
     428             : 
     429           0 : void Rescale::print_bias(long long int step) {
     430             : // if first time open the file
     431           0 :   if(first_bias_) {
     432           0 :     first_bias_ = false;
     433           0 :     Biasfile_.link(*this);
     434           0 :     Biasfile_.open(Biasfilename_);
     435             :     Biasfile_.setHeavyFlush();
     436           0 :     Biasfile_.fmtField("%30.5f");
     437             :   }
     438             : 
     439             : // write fields
     440           0 :   double MDtime = static_cast<double>(step)*getTimeStep();
     441           0 :   Biasfile_.printField("MD_time", MDtime);
     442           0 :   for(unsigned i=0; i<bias_.size(); ++i) {
     443             :     // convert i to string
     444           0 :     std::stringstream ss;
     445             :     ss << i;
     446             :     // label
     447           0 :     std::string label = "b" + ss.str();
     448             :     // print entry
     449           0 :     Biasfile_.printField(label, bias_[i]);
     450           0 :   }
     451           0 :   Biasfile_.printField();
     452           0 : }
     453             : 
     454           0 : void Rescale::calculate() {
     455             :   // get the current value of the selector
     456           0 :   unsigned igamma = static_cast<unsigned>(plumed.passMap[selector_]);
     457             : 
     458             :   // collect data from other replicas
     459           0 :   std::vector<double> all_args(getNumberOfArguments(), 0.0);
     460             :   // first calculate arguments
     461           0 :   for(unsigned i=0; i<all_args.size(); ++i) {
     462           0 :     double arg = getArgument(i);
     463             :     // sum shared arguments across replicas
     464           0 :     if(shared_[i]==1) {
     465           0 :       if(comm.Get_rank()==0) {
     466           0 :         multi_sim_comm.Sum(arg);
     467             :       } else {
     468           0 :         arg = 0.0;
     469             :       }
     470           0 :       if(comm.Get_size()>1) {
     471           0 :         comm.Sum(arg);
     472             :       }
     473             :     }
     474             :     // put into all_args
     475           0 :     all_args[i] = arg;
     476             :   }
     477             : 
     478             :   // now separate terms that should be rescaled
     479             :   std::vector<double> args;
     480           0 :   if(getNumberOfArguments()-nores_>0) {
     481           0 :     args.resize(getNumberOfArguments()-nores_);
     482             :   }
     483           0 :   for(unsigned i=0; i<args.size(); ++i) {
     484           0 :     args[i]  = all_args[i];
     485             :   }
     486             :   // and terms that should not
     487             :   std::vector<double> bargs;
     488           0 :   if(nores_>0) {
     489           0 :     bargs.resize(nores_);
     490             :   }
     491           0 :   for(unsigned i=0; i<bargs.size(); ++i) {
     492           0 :     bargs[i] = all_args[i+args.size()];
     493             :   }
     494             : 
     495             :   // calculate energy and forces, only on rescaled terms
     496             :   double ene = 0.0;
     497           0 :   for(unsigned i=0; i<args.size(); ++i) {
     498             :     // calculate energy term
     499           0 :     double fact = 1.0/pow(gamma_[igamma], expo_[i]) - 1.0;
     500           0 :     ene += args[i] * fact;
     501             :     // add force
     502           0 :     setOutputForce(i, -fact);
     503             :   }
     504             : 
     505             :   // set to zero on the others
     506           0 :   for(unsigned i=0; i<bargs.size(); ++i) {
     507           0 :     setOutputForce(i+args.size(), 0.0);
     508             :   }
     509             : 
     510             :   // set value of the bias
     511           0 :   setBias(ene);
     512             :   // set value of the wt-bias
     513           0 :   getPntrToComponent("wtbias")->set(bias_[igamma]);
     514             :   // set values of gamma
     515           0 :   getPntrToComponent("igamma")->set(igamma);
     516             :   // get time step
     517           0 :   long long int step = getStep();
     518           0 :   if(MCfirst_==-1) {
     519           0 :     MCfirst_=step;
     520             :   }
     521             :   // calculate gamma acceptance
     522           0 :   double MCtrials = std::floor(static_cast<double>(step-MCfirst_) / static_cast<double>(MCstride_))+1.0;
     523           0 :   double accgamma = static_cast<double>(MCaccgamma_) / static_cast<double>(MCsteps_) / MCtrials;
     524           0 :   getPntrToComponent("accgamma")->set(accgamma);
     525             : 
     526             :   // do MC at the right time step
     527           0 :   if(step%MCstride_==0&&!getExchangeStep()) {
     528           0 :     doMonteCarlo(igamma, ene, args, bargs);
     529             :   }
     530             : 
     531             :   // add well-tempered like bias
     532           0 :   if(step%Biaspace_==0) {
     533             :     // get updated igamma
     534           0 :     unsigned igamma = static_cast<unsigned>(plumed.passMap[selector_]);
     535             :     // add "Gaussian"
     536           0 :     double kbDT = kbt_ * ( biasf_ - 1.0 );
     537           0 :     bias_[igamma] += w0_ * std::exp(-bias_[igamma] / kbDT);
     538             :   }
     539             : 
     540             :   // print bias
     541           0 :   if(step%Biasstride_==0) {
     542           0 :     print_bias(step);
     543             :   }
     544             : 
     545           0 : }
     546             : 
     547             : 
     548             : }
     549             : }
     550             : 

Generated by: LCOV version 1.16