LCOV - code coverage report
Current view: top level - opes - OPESmetad.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 788 823 95.7 %
Date: 2025-11-25 13:55:50 Functions: 27 28 96.4 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             :    Copyright (c) 2020-2021 of Michele Invernizzi.
       3             : 
       4             :    This file is part of the OPES plumed module.
       5             : 
       6             :    The OPES plumed module is free software: you can redistribute it and/or modify
       7             :    it under the terms of the GNU Lesser General Public License as published by
       8             :    the Free Software Foundation, either version 3 of the License, or
       9             :    (at your option) any later version.
      10             : 
      11             :    The OPES plumed module is distributed in the hope that it will be useful,
      12             :    but WITHOUT ANY WARRANTY; without even the implied warranty of
      13             :    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      14             :    GNU Lesser General Public License for more details.
      15             : 
      16             :    You should have received a copy of the GNU Lesser General Public License
      17             :    along with plumed.  If not, see <http://www.gnu.org/licenses/>.
      18             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      19             : #include "bias/Bias.h"
      20             : #include "core/PlumedMain.h"
      21             : #include "core/ActionRegister.h"
      22             : #include "tools/Communicator.h"
      23             : #include "tools/File.h"
      24             : #include "tools/OpenMP.h"
      25             : 
      26             : namespace PLMD {
      27             : namespace opes {
      28             : 
      29             : //+PLUMEDOC OPES_BIAS OPES_METAD
      30             : /*
      31             : On-the-fly probability enhanced sampling with metadynamics-like target distribution.
      32             : 
      33             : This On-the-fly probability enhanced sampling (\ref OPES "OPES") method with metadynamics-like target distribution is described in \cite Invernizzi2020rethinking.
      34             : 
      35             : This \ref OPES_METAD action samples target distributions defined via their marginal \f$p^{\text{tg}}(\mathbf{s})\f$ over some collective variables (CVs), \f$\mathbf{s}=\mathbf{s}(\mathbf{x})\f$.
      36             : By default \ref OPES_METAD targets the well-tempered distribution, \f$p^{\text{WT}}(\mathbf{s})\propto [P(\mathbf{s})]^{1/\gamma}\f$, where \f$\gamma\f$ is known as BIASFACTOR.
      37             : Similarly to \ref METAD, \ref OPES_METAD optimizes the bias on-the-fly, with a given PACE.
      38             : It does so by reweighting via kernel density estimation the unbiased distribution in the CV space, \f$P(\mathbf{s})\f$.
      39             : A compression algorithm is used to prevent the number of kernels from growing linearly with the simulation time.
      40             : The bias at step \f$n\f$ is
      41             : \f[
      42             : V_n(\mathbf{s}) = (1-1/\gamma)\frac{1}{\beta}\log\left(\frac{P_n(\mathbf{s})}{Z_n}+\epsilon\right)\, .
      43             : \f]
      44             : See Ref.\cite Invernizzi2020rethinking for a complete description of the method.
      45             : 
      46             : As an intuitive picture, rather than gradually filling the metastable basins, \ref OPES_METAD quickly tries to get a coarse idea of the full free energy surface (FES), and then slowly refines its details.
      47             : It has a fast initial exploration phase, and then becomes extremely conservative and does not significantly change the shape of the deposited bias any more, reaching a regime of quasi-static bias.
      48             : For this reason, it is possible to use standard umbrella sampling reweighting (see \ref REWEIGHT_BIAS) to analyse the trajectory.
      49             : At <a href="https://github.com/invemichele/opes/tree/master/postprocessing">this link</a> you can find some python scripts that work in a similar way to \ref sum_hills, but the preferred way to obtain a FES with OPES is via reweighting (see \ref opes-metad).
      50             : The estimated \f$c(t)\f$ is printed for reference only, since it should converge to a fixed value as the bias converges.
      51             : This \f$c(t)\f$ should NOT be used for reweighting.
      52             : Similarly, the \f$Z_n\f$ factor is printed only for reference, and it should converge when no new region of the CV-space is explored.
      53             : 
      54             : Notice that \ref OPES_METAD is more sensitive to degenerate CVs than \ref METAD.
      55             : If the employed CVs map different metastable basins onto the same CV-space region, then \ref OPES_METAD will remain stuck rather than completely reshaping the bias.
      56             : This can be useful to diagnose problems with your collective variable.
      57             : If it is not possible to improve the set of CVs and remove this degeneracy, then you might instead consider to use \ref OPES_METAD_EXPLORE or \ref METAD.
      58             : In this way you will be able to obtain an estimate of the FES, but be aware that you most likely will not reach convergence and thus this estimate will be subjected to systematic errors (see e.g. Fig.3 in \cite Pietrucci2017review).
      59             : On the contrary, if your CVs are not degenerate but only suboptimal, you should converge faster by using \ref OPES_METAD instead of \ref METAD \cite Invernizzi2020rethinking.
      60             : 
      61             : The parameter BARRIER should be set to be at least equal to the highest free energy barrier you wish to overcome.
      62             : If it is much lower than that, you will not cross the barrier, if it is much higher, convergence might take a little longer.
      63             : If the system has a basin that is clearly more stable than the others, it is better to start the simulation from there.
      64             : 
      65             : By default, the kernels SIGMA is adaptive, estimated from the fluctuations over ADAPTIVE_SIGMA_STRIDE simulation steps (similar to \ref METAD ADAPTIVE=DIFF, but contrary to that, no artifacts are introduced and the bias will converge to the correct one).
      66             : However, notice that depending on the system this might not be the optimal choice for SIGMA.
      67             : 
      68             : You can target a uniform flat distribution by explicitly setting BIASFACTOR=inf.
      69             : However, this should be useful only in very specific cases.
      70             : 
      71             : It is possible to take into account also of other bias potentials besides the one of \ref OPES_METAD during the internal reweighting for \f$P(\mathbf{s})\f$ estimation.
      72             : To do so, one has to add those biases with the EXTRA_BIAS keyword, as in the example below.
      73             : This allows one to define a custom target distribution by adding another bias potential equal to the desired target free energy and setting BIASFACTOR=inf (see example below).
      74             : Another possible usage of EXTRA_BIAS is to make sure that \ref OPES_METAD does not push against another fixed bias added to restrain the CVs range (e.g. \ref UPPER_WALLS).
      75             : 
      76             : Through the EXCLUDED_REGION keywork, it is possible to specify a region of CV space where no kernels will be deposited.
      77             : This can be useful for example for making sure the bias does not modify the transition region, thus allowing for rate calculation.
      78             : See below for an example of how to use this keyword.
      79             : 
      80             : Restart can be done from a KERNELS file, but it might be not perfect (due to limited precision when printing kernels to file, or if adaptive SIGMA is used).
      81             : For an exact restart you must use STATE_RFILE to read a checkpoint with all the needed info.
      82             : To save such checkpoints, define a STATE_WFILE and choose how often to print them with STATE_WSTRIDE.
      83             : By default this file is overwritten, but you can instead append to it using the flag STORE_STATES.
      84             : 
      85             : Multiple walkers are supported only with MPI communication, via the keyword WALKERS_MPI.
      86             : 
      87             : \par Examples
      88             : 
      89             : Several examples can be found on the <a href="https://www.plumed-nest.org/browse.html">PLUMED-NEST website</a>, by searching for the OPES keyword.
      90             : The \ref opes-metad can also be useful to get started with the method.
      91             : 
      92             : The following is a minimal working example:
      93             : 
      94             : \plumedfile
      95             : cv: DISTANCE ATOMS=1,2
      96             : opes: OPES_METAD ARG=cv PACE=200 BARRIER=40
      97             : PRINT STRIDE=200 FILE=COLVAR ARG=*
      98             : \endplumedfile
      99             : 
     100             : Another more articulated one:
     101             : 
     102             : \plumedfile
     103             : phi: TORSION ATOMS=5,7,9,15
     104             : psi: TORSION ATOMS=7,9,15,17
     105             : opes: OPES_METAD ...
     106             :   FILE=Kernels.data
     107             :   TEMP=300
     108             :   ARG=phi,psi
     109             :   PACE=500
     110             :   BARRIER=50
     111             :   SIGMA=0.15,0.15
     112             :   SIGMA_MIN=0.01,0.01
     113             :   STATE_RFILE=Restart.data
     114             :   STATE_WFILE=State.data
     115             :   STATE_WSTRIDE=500*100
     116             :   STORE_STATES
     117             :   WALKERS_MPI
     118             :   NLIST
     119             : ...
     120             : PRINT FMT=%g STRIDE=500 FILE=Colvar.data ARG=phi,psi,opes.*
     121             : \endplumedfile
     122             : 
     123             : Next is an example of how to define a custom target distribution different from the well-tempered one.
     124             : Here we chose to focus more on the transition state, that is around \f$\phi=0\f$.
     125             : Our target distribution is a Gaussian centered there, thus the target free energy we want to sample is a parabola, \f$F^{\text{tg}}(\mathbf{s})=-\frac{1}{\beta} \log [p^{\text{tg}}(\mathbf{s})]\f$.
     126             : 
     127             : \plumedfile
     128             : phi: TORSION ATOMS=5,7,9,15
     129             : FtgValue: CUSTOM ARG=phi PERIODIC=NO FUNC=(x/0.4)^2
     130             : Ftg: BIASVALUE ARG=FtgValue
     131             : opes: OPES_METAD ...
     132             :   ARG=phi
     133             :   PACE=500
     134             :   BARRIER=50
     135             :   SIGMA=0.2
     136             :   BIASFACTOR=inf
     137             :   EXTRA_BIAS=Ftg.bias
     138             : ...
     139             : PRINT FMT=%g STRIDE=500 FILE=COLVAR ARG=phi,Ftg.bias,opes.bias
     140             : \endplumedfile
     141             : 
     142             : Notice that in order to reweight for the unbiased \f$P(\mathbf{s})\f$ during postprocessing, the total bias `Ftg.bias+opes.bias` must be used.
     143             : 
     144             : Finally, an example of how to use the EXCLUDED_REGION keyword.
     145             : It expects a characteristic function that is different from zero in the region to be excluded.
     146             : You can use \ref CUSTOM and a combination of the step function to define it.
     147             : With the following input no kernel is deposited in the transition state region of alanine dipeptide, defined by the interval \f$\phi \in [-0.6, 0.7]\f$:
     148             : 
     149             : \plumedfile
     150             : phi: TORSION ATOMS=5,7,9,15
     151             : psi: TORSION ATOMS=7,9,15,17
     152             : xx: CUSTOM PERIODIC=NO ARG=phi FUNC=step(x+0.6)-step(x-0.7)
     153             : opes: OPES_METAD ...
     154             :   ARG=phi,psi
     155             :   PACE=500
     156             :   BARRIER=30
     157             :   EXCLUDED_REGION=xx
     158             :   NLIST
     159             : ...
     160             : PRINT FMT=%g STRIDE=500 FILE=COLVAR ARG=phi,psi,xx,opes.*
     161             : \endplumedfile
     162             : 
     163             : */
     164             : //+ENDPLUMEDOC
     165             : 
     166             : template <class mode>
     167             : class OPESmetad : public bias::Bias {
     168             : 
     169             : private:
     170             :   bool isFirstStep_;
     171             :   unsigned NumOMP_;
     172             :   unsigned NumParallel_;
     173             :   unsigned rank_;
     174             :   unsigned NumWalkers_;
     175             :   unsigned walker_rank_;
     176             :   unsigned long long counter_;
     177             :   std::size_t ncv_;
     178             : 
     179             :   double kbt_;
     180             :   double biasfactor_;
     181             :   double bias_prefactor_;
     182             :   unsigned stride_;
     183             :   std::vector<double> sigma0_;
     184             :   std::vector<double> sigma_min_;
     185             :   unsigned adaptive_sigma_stride_;
     186             :   unsigned long long adaptive_counter_;
     187             :   std::vector<double> av_cv_;
     188             :   std::vector<double> av_M2_;
     189             :   bool fixed_sigma_;
     190             :   bool adaptive_sigma_;
     191             :   double epsilon_;
     192             :   double sum_weights_;
     193             :   double sum_weights2_;
     194             : 
     195             :   bool no_Zed_;
     196             :   double Zed_;
     197             :   double KDEnorm_;
     198             : 
     199             :   double threshold2_;
     200             :   bool recursive_merge_;
     201             : //kernels are truncated diagonal Gaussians
     202        1050 :   struct kernel {
     203             :     double height;
     204             :     std::vector<double> center;
     205             :     std::vector<double> sigma;
     206        1050 :     kernel(double h, const std::vector<double>& c,const std::vector<double>& s):
     207        1050 :       height(h),center(c),sigma(s) {}
     208             :   };
     209             :   double cutoff2_;
     210             :   double val_at_cutoff_;
     211             :   void mergeKernels(kernel&,const kernel&); //merge the second one into the first one
     212             :   double evaluateKernel(const kernel&,const std::vector<double>&) const;
     213             :   double evaluateKernel(const kernel&,const std::vector<double>&,std::vector<double>&,std::vector<double>&);
     214             :   std::vector<kernel> kernels_; //all compressed kernels
     215             :   OFile kernelsOfile_;
     216             : //neighbour list stuff
     217             :   bool nlist_;
     218             :   double nlist_param_[2];
     219             :   std::vector<unsigned> nlist_index_;
     220             :   std::vector<double> nlist_center_;
     221             :   std::vector<double> nlist_dev2_;
     222             :   unsigned nlist_steps_;
     223             :   bool nlist_update_;
     224             :   bool nlist_pace_reset_;
     225             : 
     226             :   bool calc_work_;
     227             :   double work_;
     228             :   double old_KDEnorm_;
     229             :   std::vector<kernel> delta_kernels_;
     230             : 
     231             :   Value* excluded_region_;
     232             :   std::vector<Value*> extra_biases_;
     233             : 
     234             :   OFile stateOfile_;
     235             :   int wStateStride_;
     236             :   bool storeOldStates_;
     237             : 
     238             :   double getProbAndDerivatives(const std::vector<double>&,std::vector<double>&);
     239             :   void addKernel(const double,const std::vector<double>&,const std::vector<double>&);
     240             :   void addKernel(const double,const std::vector<double>&,const std::vector<double>&,const double); //also print to file
     241             :   unsigned getMergeableKernel(const std::vector<double>&,const unsigned);
     242             :   void updateNlist(const std::vector<double>&);
     243             :   void dumpStateToFile();
     244             : 
     245             : public:
     246             :   explicit OPESmetad(const ActionOptions&);
     247             :   void calculate() override;
     248             :   void update() override;
     249             :   static void registerKeywords(Keywords& keys);
     250             : };
     251             : 
     252             : struct convergence {
     253             :   static const bool explore=false;
     254             : };
     255             : typedef OPESmetad<convergence> OPESmetad_c;
     256             : PLUMED_REGISTER_ACTION(OPESmetad_c,"OPES_METAD")
     257             : 
     258             : //OPES_METAD_EXPLORE is very similar from the point of view of the code,
     259             : //but conceptually it is better to make it a separate BIAS action
     260             : 
     261             : //+PLUMEDOC OPES_BIAS OPES_METAD_EXPLORE
     262             : /*
     263             : On-the-fly probability enhanced sampling with well-tempered target distribution in exploreation mode.
     264             : 
     265             : On-the-fly probability enhanced sampling with well-tempered target distribution (\ref OPES "OPES") with well-tempered target distribution, exploration mode \cite Invernizzi2022explore .
     266             : 
     267             : This \ref OPES_METAD_EXPLORE action samples the well-tempered target distribution, that is defined via its marginal \f$p^{\text{WT}}(\mathbf{s})\propto [P(\mathbf{s})]^{1/\gamma}\f$ over some collective variables (CVs), \f$\mathbf{s}=\mathbf{s}(\mathbf{x})\f$.
     268             : While \ref OPES_METAD does so by estimating the unbiased distribution \f$P(\mathbf{s})\f$, \ref OPES_METAD_EXPLORE instead estimates on-the-fly the target \f$p^{\text{WT}}(\mathbf{s})\f$ and uses it to define the bias.
     269             : The bias at step \f$n\f$ is
     270             : \f[
     271             : V_n(\mathbf{s}) = (\gamma-1)\frac{1}{\beta}\log\left(\frac{p^{\text{WT}}_n(\mathbf{s})}{Z_n}+\epsilon\right)\, .
     272             : \f]
     273             : See Ref.\cite Invernizzi2022explore for a complete description of the method.
     274             : 
     275             : Intuitively, while \ref OPES_METAD aims at quickly converging the reweighted free energy, \ref OPES_METAD_EXPLORE aims at quickly sampling the target well-tempered distribution.
     276             : Given enough simulation time, both will converge to the same bias potential but they do so in a qualitatively different way.
     277             : Compared to \ref OPES_METAD, \ref OPES_METAD_EXPLORE is more similar to \ref METAD, because it allows the bias to vary significantly, thus enhancing exploration.
     278             : This goes at the expenses of a typically slower convergence of the reweight estimate.
     279             : \ref OPES_METAD_EXPLORE can be useful e.g.~for simulating a new system with an unknown BARRIER, or for quickly testing the effectiveness of a new CV that might be degenerate.
     280             : 
     281             : Similarly to \ref OPES_METAD, also \ref OPES_METAD_EXPLORE uses a kernel density estimation with the same on-the-fly compression algorithm.
     282             : The only difference is that the kernels are not weighted, since it estimates the sampled distribution and not the reweighted unbiased one.
     283             : 
     284             : All the options of \ref OPES_METAD are also available in \ref OPES_METAD_EXPLORE, except for those that modify the target distribution, since only a well-tempered target is allowed in this case.
     285             : 
     286             : \par Examples
     287             : 
     288             : The following is a minimal working example:
     289             : 
     290             : \plumedfile
     291             : cv: DISTANCE ATOMS=1,2
     292             : opes: OPES_METAD_EXPLORE ARG=cv PACE=500 BARRIER=40
     293             : PRINT STRIDE=100 FILE=COLVAR ARG=cv,opes.*
     294             : \endplumedfile
     295             : */
     296             : //+ENDPLUMEDOC
     297             : 
     298             : struct exploration {
     299             :   static const bool explore=true;
     300             : };
     301             : typedef OPESmetad<exploration> OPESmetad_e;
     302             : PLUMED_REGISTER_ACTION(OPESmetad_e,"OPES_METAD_EXPLORE")
     303             : 
     304             : template <class mode>
     305          25 : void OPESmetad<mode>::registerKeywords(Keywords& keys) {
     306          25 :   Bias::registerKeywords(keys);
     307          25 :   keys.use("ARG");
     308          50 :   keys.add("compulsory","TEMP","-1","temperature. If not set, it is taken from MD engine, but not all MD codes provide it");
     309          50 :   keys.add("compulsory","PACE","the frequency for kernel deposition");
     310          25 :   std::string info_sigma("the initial widths of the kernels");
     311             :   if(mode::explore) {
     312             :     info_sigma+=", divided by the square root of gamma";
     313             :   }
     314             :   info_sigma+=". If not set, an adaptive sigma will be used with the given ADAPTIVE_SIGMA_STRIDE";
     315          50 :   keys.add("compulsory","SIGMA","ADAPTIVE",info_sigma);
     316          50 :   keys.add("compulsory","BARRIER","the free energy barrier to be overcome. It is used to set BIASFACTOR, EPSILON, and KERNEL_CUTOFF to reasonable values");
     317          50 :   keys.add("compulsory","COMPRESSION_THRESHOLD","1","merge kernels if closer than this threshold, in units of sigma");
     318             : //extra options
     319          50 :   keys.add("optional","ADAPTIVE_SIGMA_STRIDE","number of steps for measuring adaptive sigma. Default is 10xPACE");
     320          50 :   keys.add("optional","SIGMA_MIN","never reduce SIGMA below this value");
     321          25 :   std::string info_biasfactor("the gamma bias factor used for the well-tempered target distribution. ");
     322             :   if(mode::explore) {
     323             :     info_biasfactor+="Cannot be 'inf'";
     324             :   } else {
     325             :     info_biasfactor+="Set to 'inf' for uniform flat target";
     326             :   }
     327          50 :   keys.add("optional","BIASFACTOR",info_biasfactor);
     328          50 :   keys.add("optional","EPSILON","the value of the regularization constant for the probability");
     329          50 :   keys.add("optional","KERNEL_CUTOFF","truncate kernels at this distance, in units of sigma");
     330          50 :   keys.add("optional","NLIST_PARAMETERS","( default=3.0,0.5 ) the two cutoff parameters for the kernels neighbor list");
     331          50 :   keys.addFlag("NLIST",false,"use neighbor list for kernels summation, faster but experimental");
     332          50 :   keys.addFlag("NLIST_PACE_RESET",false,"force the reset of the neighbor list at each PACE. Can be useful with WALKERS_MPI");
     333          50 :   keys.addFlag("FIXED_SIGMA",false,"do not decrease sigma as the simulation proceeds. Can be added in a RESTART, to keep in check the number of compressed kernels");
     334          50 :   keys.addFlag("RECURSIVE_MERGE_OFF",false,"do not recursively attempt kernel merging when a new one is added");
     335          50 :   keys.addFlag("NO_ZED",false,"do not normalize over the explored CV space, Z_n=1");
     336             : //kernels and state files
     337          50 :   keys.add("compulsory","FILE","KERNELS","a file in which the list of all deposited kernels is stored");
     338          50 :   keys.add("optional","FMT","specify format for KERNELS file");
     339          50 :   keys.add("optional","STATE_RFILE","read from this file the compressed kernels and all the info needed to RESTART the simulation");
     340          50 :   keys.add("optional","STATE_WFILE","write to this file the compressed kernels and all the info needed to RESTART the simulation");
     341          50 :   keys.add("optional","STATE_WSTRIDE","number of MD steps between writing the STATE_WFILE. Default is only on CPT events (but not all MD codes set them)");
     342          50 :   keys.addFlag("STORE_STATES",false,"append to STATE_WFILE instead of ovewriting it each time");
     343             : //miscellaneous
     344          50 :   keys.add("optional","EXCLUDED_REGION","kernels are not deposited when the action provided here has a nonzero value, see example above");
     345             :   if(!mode::explore) {
     346          32 :     keys.add("optional","EXTRA_BIAS","consider also these other bias potentials for the internal reweighting. This can be used e.g. for sampling a custom target distribution (see example above)");
     347             :   }
     348          50 :   keys.addFlag("CALC_WORK",false,"calculate the total accumulated work done by the bias since last restart");
     349          50 :   keys.addFlag("WALKERS_MPI",false,"switch on MPI version of multiple walkers");
     350          50 :   keys.addFlag("SERIAL",false,"perform calculations in serial");
     351          25 :   keys.use("RESTART");
     352          25 :   keys.use("UPDATE_FROM");
     353          25 :   keys.use("UPDATE_UNTIL");
     354             : 
     355             : //output components
     356          50 :   keys.addOutputComponent("rct","default","estimate of c(t). log(exp(beta V)/beta, should become flat as the simulation converges. Do NOT use for reweighting");
     357          50 :   keys.addOutputComponent("zed","default","estimate of Z_n. should become flat once no new CV-space region is explored");
     358          50 :   keys.addOutputComponent("neff","default","effective sample size");
     359          50 :   keys.addOutputComponent("nker","default","total number of compressed kernels used to represent the bias");
     360          50 :   keys.addOutputComponent("work","CALC_WORK","total accumulated work done by the bias");
     361          50 :   keys.addOutputComponent("nlker","NLIST","number of kernels in the neighbor list");
     362          50 :   keys.addOutputComponent("nlsteps","NLIST","number of steps from last neighbor list update");
     363          25 : }
     364             : 
     365             : template <class mode>
     366          21 : OPESmetad<mode>::OPESmetad(const ActionOptions& ao)
     367             :   : PLUMED_BIAS_INIT(ao)
     368          21 :   , isFirstStep_(true)
     369          21 :   , counter_(1)
     370          21 :   , ncv_(getNumberOfArguments())
     371          21 :   , Zed_(1)
     372          21 :   , work_(0)
     373          21 :   , excluded_region_(NULL) {
     374          42 :   std::string error_in_input1("Error in input in action "+getName()+" with label "+getLabel()+": the keyword ");
     375          21 :   std::string error_in_input2(" could not be read correctly");
     376             : 
     377             : //set kbt_
     378          21 :   const double kB=getKBoltzmann();
     379          21 :   kbt_=getkBT();
     380             : 
     381             : //other compulsory input
     382          21 :   parse("PACE",stride_);
     383             : 
     384          21 :   double barrier=0;
     385          21 :   parse("BARRIER",barrier);
     386          21 :   plumed_massert(barrier>=0,"the BARRIER should be greater than zero");
     387             : 
     388          21 :   biasfactor_=barrier/kbt_;
     389             :   std::string biasfactor_str;
     390          42 :   parse("BIASFACTOR",biasfactor_str);
     391          38 :   if(biasfactor_str=="inf" || biasfactor_str=="INF") {
     392           4 :     biasfactor_=std::numeric_limits<double>::infinity();
     393           4 :     bias_prefactor_=1;
     394             :   } else {
     395          17 :     if(biasfactor_str.length()>0) {
     396           3 :       plumed_massert(Tools::convertNoexcept(biasfactor_str,biasfactor_),error_in_input1+"BIASFACTOR"+error_in_input2);
     397             :     }
     398          17 :     plumed_massert(biasfactor_>1,"BIASFACTOR must be greater than one (use 'inf' for uniform target)");
     399          17 :     bias_prefactor_=1-1./biasfactor_;
     400             :   }
     401             :   if(mode::explore) {
     402           7 :     plumed_massert(!std::isinf(biasfactor_),"BIASFACTOR=inf is not compatible with EXPLORE mode");
     403           7 :     bias_prefactor_=biasfactor_-1;
     404             :   }
     405             : 
     406          21 :   adaptive_sigma_=false;
     407          21 :   adaptive_sigma_stride_=0;
     408          42 :   parse("ADAPTIVE_SIGMA_STRIDE",adaptive_sigma_stride_);
     409             :   std::vector<std::string> sigma_str;
     410          21 :   parseVector("SIGMA",sigma_str);
     411          21 :   sigma0_.resize(ncv_);
     412             :   double dummy;
     413          21 :   if(sigma_str.size()==1 && !Tools::convertNoexcept(sigma_str[0],dummy)) {
     414          11 :     plumed_massert(sigma_str[0]=="ADAPTIVE" || sigma_str[0]=="adaptive",error_in_input1+"SIGMA"+error_in_input2);
     415          11 :     plumed_massert(!std::isinf(biasfactor_),"cannot use BIASFACTOR=inf with adaptive SIGMA");
     416          11 :     adaptive_counter_=0;
     417          11 :     if(adaptive_sigma_stride_==0) {
     418           2 :       adaptive_sigma_stride_=10*stride_;  //NB: this is arbitrary, chosen from few tests
     419             :     }
     420          11 :     av_cv_.resize(ncv_,0);
     421          11 :     av_M2_.resize(ncv_,0);
     422          11 :     plumed_massert(adaptive_sigma_stride_>=stride_,"better to chose ADAPTIVE_SIGMA_STRIDE > PACE");
     423          11 :     adaptive_sigma_=true;
     424             :   } else {
     425          10 :     plumed_massert(sigma_str.size()==ncv_,"number of SIGMA parameters does not match number of arguments");
     426          10 :     plumed_massert(adaptive_sigma_stride_==0,"if SIGMA is not ADAPTIVE you cannot set an ADAPTIVE_SIGMA_STRIDE");
     427          29 :     for(unsigned i=0; i<ncv_; i++) {
     428          19 :       plumed_massert(Tools::convertNoexcept(sigma_str[i],sigma0_[i]),error_in_input1+"SIGMA"+error_in_input2);
     429             :       if(mode::explore) {
     430           6 :         sigma0_[i]*=std::sqrt(biasfactor_);  //the sigma of the target is broader Ftg(s)=1/gamma*F(s)
     431             :       }
     432             :     }
     433             :   }
     434          42 :   parseVector("SIGMA_MIN",sigma_min_);
     435          21 :   plumed_massert(sigma_min_.size()==0 || sigma_min_.size()==ncv_,"number of SIGMA_MIN does not match number of arguments");
     436          21 :   if(sigma_min_.size()>0 && !adaptive_sigma_) {
     437           3 :     for(unsigned i=0; i<ncv_; i++) {
     438           2 :       plumed_massert(sigma_min_[i]<=sigma0_[i],"SIGMA_MIN should be smaller than SIGMA");
     439             :     }
     440             :   }
     441             : 
     442          21 :   epsilon_=std::exp(-barrier/bias_prefactor_/kbt_);
     443          21 :   parse("EPSILON",epsilon_);
     444          21 :   plumed_massert(epsilon_>0,"you must choose a value for EPSILON greater than zero. Is your BARRIER too high?");
     445          21 :   sum_weights_=std::pow(epsilon_,bias_prefactor_); //to avoid NANs we start with counter_=1 and w0=exp(beta*V0)
     446          21 :   sum_weights2_=sum_weights_*sum_weights_;
     447             : 
     448          21 :   double cutoff=sqrt(2.*barrier/bias_prefactor_/kbt_);
     449             :   if(mode::explore) {
     450           7 :     cutoff=sqrt(2.*barrier/kbt_);  //otherwise it is too small
     451             :   }
     452          21 :   parse("KERNEL_CUTOFF",cutoff);
     453          21 :   plumed_massert(cutoff>0,"you must choose a value for KERNEL_CUTOFF greater than zero");
     454          21 :   cutoff2_=cutoff*cutoff;
     455          21 :   val_at_cutoff_=std::exp(-0.5*cutoff2_);
     456             : 
     457          21 :   threshold2_=1;
     458          21 :   parse("COMPRESSION_THRESHOLD",threshold2_);
     459          21 :   threshold2_*=threshold2_;
     460          21 :   if(threshold2_!=0) {
     461          21 :     plumed_massert(threshold2_>0 && threshold2_<cutoff2_,"COMPRESSION_THRESHOLD cannot be bigger than the KERNEL_CUTOFF");
     462             :   }
     463             : 
     464             : //setup neighbor list
     465          21 :   nlist_=false;
     466          21 :   parseFlag("NLIST",nlist_);
     467          21 :   nlist_pace_reset_=false;
     468          21 :   parseFlag("NLIST_PACE_RESET",nlist_pace_reset_);
     469          21 :   if(nlist_pace_reset_) {
     470           2 :     nlist_=true;
     471             :   }
     472             :   std::vector<double> nlist_param;
     473          42 :   parseVector("NLIST_PARAMETERS",nlist_param);
     474          21 :   if(nlist_param.size()==0) {
     475          17 :     nlist_param_[0]=3.0;//*cutoff2_ -> max distance of neighbors
     476          17 :     nlist_param_[1]=0.5;//*nlist_dev2_[i] -> condition for rebuilding
     477             :   } else {
     478           4 :     nlist_=true;
     479           4 :     plumed_massert(nlist_param.size()==2,"two cutoff parameters are needed for the neighbor list");
     480           4 :     plumed_massert(nlist_param[0]>1.0,"the first of NLIST_PARAMETERS must be greater than 1. The smaller the first, the smaller should be the second as well");
     481           4 :     const double min_PARAM_1=(1.-1./std::sqrt(nlist_param[0]))+0.16;
     482           4 :     plumed_massert(nlist_param[1]>0,"the second of NLIST_PARAMETERS must be greater than 0");
     483           4 :     plumed_massert(nlist_param[1]<=min_PARAM_1,"the second of NLIST_PARAMETERS must be smaller to avoid systematic errors. Largest suggested value is: 1.16-1/sqrt(PARAM_0) = "+std::to_string(min_PARAM_1));
     484           4 :     nlist_param_[0]=nlist_param[0];
     485           4 :     nlist_param_[1]=nlist_param[1];
     486             :   }
     487          21 :   nlist_center_.resize(ncv_);
     488          21 :   nlist_dev2_.resize(ncv_,0.);
     489          21 :   nlist_steps_=0;
     490          21 :   nlist_update_=true;
     491             : 
     492             : //optional stuff
     493          21 :   no_Zed_=false;
     494          21 :   parseFlag("NO_ZED",no_Zed_);
     495          21 :   if(no_Zed_) {
     496             :     //this makes it more gentle in the initial phase
     497           6 :     sum_weights_=1;
     498           6 :     sum_weights2_=1;
     499             :   }
     500          21 :   fixed_sigma_=false;
     501          21 :   parseFlag("FIXED_SIGMA",fixed_sigma_);
     502          21 :   bool recursive_merge_off=false;
     503          21 :   parseFlag("RECURSIVE_MERGE_OFF",recursive_merge_off);
     504          21 :   recursive_merge_=!recursive_merge_off;
     505          42 :   parseFlag("CALC_WORK",calc_work_);
     506             : 
     507             : //options involving extra arguments
     508             :   std::vector<Value*> args;
     509          42 :   parseArgumentList("EXCLUDED_REGION",args);
     510          21 :   if(args.size()>0) {
     511           2 :     plumed_massert(args.size()==1,"only one characteristic function should define the region to be excluded");
     512           2 :     requestExtraDependencies(args);
     513           2 :     excluded_region_=args[0];
     514             :   }
     515             :   if(!mode::explore) {
     516          28 :     parseArgumentList("EXTRA_BIAS",extra_biases_);
     517          14 :     if(extra_biases_.size()>0) {
     518           2 :       requestExtraDependencies(extra_biases_);
     519             :     }
     520             :   }
     521             : 
     522             : //kernels file
     523             :   std::string kernelsFileName;
     524          42 :   parse("FILE",kernelsFileName);
     525             :   std::string fmt;
     526          42 :   parse("FMT",fmt);
     527             : 
     528             : //output checkpoint of current state
     529             :   std::string restartFileName;
     530          42 :   parse("STATE_RFILE",restartFileName);
     531             :   std::string stateFileName;
     532          21 :   parse("STATE_WFILE",stateFileName);
     533          21 :   wStateStride_=0;
     534          21 :   parse("STATE_WSTRIDE",wStateStride_);
     535          21 :   storeOldStates_=false;
     536          21 :   parseFlag("STORE_STATES",storeOldStates_);
     537          21 :   if(wStateStride_!=0 || storeOldStates_) {
     538          10 :     plumed_massert(stateFileName.length()>0,"filename for storing simulation status not specified, use STATE_WFILE");
     539             :   }
     540          21 :   if(wStateStride_>0) {
     541          10 :     plumed_massert(wStateStride_>=(int)stride_,"STATE_WSTRIDE is in units of MD steps, thus it is suggested to use a multiple of PACE");
     542             :   }
     543          21 :   if(stateFileName.length()>0 && wStateStride_==0) {
     544           1 :     wStateStride_=-1;  //will print only on CPT events (checkpoints set by some MD engines, like gromacs)
     545             :   }
     546             : 
     547             : //multiple walkers //TODO implement also external mw for cp2k
     548          21 :   bool walkers_mpi=false;
     549          21 :   parseFlag("WALKERS_MPI",walkers_mpi);
     550          21 :   if(walkers_mpi) {
     551             :     //If this Action is not compiled with MPI the user is informed and we exit gracefully
     552          10 :     plumed_massert(Communicator::plumedHasMPI(),"Invalid walkers configuration: WALKERS_MPI flag requires MPI compilation");
     553          10 :     plumed_massert(Communicator::initialized(),"Invalid walkers configuration: WALKERS_MPI needs the communicator correctly initialized.");
     554             : 
     555          10 :     if(comm.Get_rank()==0) { //multi_sim_comm works on first rank only
     556          10 :       NumWalkers_=multi_sim_comm.Get_size();
     557          10 :       walker_rank_=multi_sim_comm.Get_rank();
     558             :     }
     559          10 :     comm.Bcast(NumWalkers_,0); //if each walker has more than one processor update them all
     560          10 :     comm.Bcast(walker_rank_,0);
     561             :   } else {
     562          11 :     NumWalkers_=1;
     563          11 :     walker_rank_=0;
     564             :   }
     565             : 
     566             : //parallelization stuff
     567          21 :   NumOMP_=OpenMP::getNumThreads();
     568          21 :   NumParallel_=comm.Get_size();
     569          21 :   rank_=comm.Get_rank();
     570          21 :   bool serial=false;
     571          21 :   parseFlag("SERIAL",serial);
     572          21 :   if(serial) {
     573           4 :     NumOMP_=1;
     574           4 :     NumParallel_=1;
     575           4 :     rank_=0;
     576             :   }
     577             : 
     578          21 :   checkRead();
     579             : 
     580             : //restart if needed
     581             :   bool convertKernelsToState=false;
     582          21 :   if(getRestart()) {
     583             :     bool stateRestart=true;
     584          11 :     if(restartFileName.length()==0) {
     585             :       stateRestart=false;
     586             :       restartFileName=kernelsFileName;
     587             :     }
     588          11 :     IFile ifile;
     589          11 :     ifile.link(*this);
     590          11 :     if(ifile.FileExist(restartFileName)) {
     591          11 :       bool tmp_nlist=nlist_;
     592          11 :       nlist_=false; // NLIST is not needed while restarting
     593          11 :       ifile.open(restartFileName);
     594          11 :       log.printf("  RESTART - make sure all used options are compatible\n");
     595          11 :       log.printf("    restarting from: %s\n",restartFileName.c_str());
     596          11 :       std::string action_name=getName();
     597          11 :       if(stateRestart) {
     598           6 :         log.printf("    it should be a STATE file (not a KERNELS file)\n");
     599             :         action_name+="_state";
     600             :       } else {
     601           5 :         log.printf(" +++ WARNING +++ RESTART from KERNELS might be approximate, use STATE_WFILE and STATE_RFILE to restart from the exact state\n");
     602             :         action_name+="_kernels";
     603             :       }
     604             :       std::string old_action_name;
     605          11 :       ifile.scanField("action",old_action_name);
     606          11 :       plumed_massert(action_name==old_action_name,"RESTART - mismatch between old and new action name. Expected '"+action_name+"', but found '"+old_action_name+"'");
     607             :       std::string old_biasfactor_str;
     608          22 :       ifile.scanField("biasfactor",old_biasfactor_str);
     609          21 :       if(old_biasfactor_str=="inf" || old_biasfactor_str=="INF") {
     610           1 :         if(!std::isinf(biasfactor_)) {
     611           0 :           log.printf(" +++ WARNING +++ previous bias factor was inf while now it is %g\n",biasfactor_);
     612             :         }
     613             :       } else {
     614             :         double old_biasfactor;
     615          10 :         ifile.scanField("biasfactor",old_biasfactor);
     616          10 :         if(std::abs(biasfactor_-old_biasfactor)>1e-6*biasfactor_) {
     617           0 :           log.printf(" +++ WARNING +++ previous bias factor was %g while now it is %g. diff = %g\n",old_biasfactor,biasfactor_,biasfactor_-old_biasfactor);
     618             :         }
     619             :       }
     620             :       double old_epsilon;
     621          11 :       ifile.scanField("epsilon",old_epsilon);
     622          11 :       if(std::abs(epsilon_-old_epsilon)>1e-6*epsilon_) {
     623           8 :         log.printf(" +++ WARNING +++ previous epsilon was %g while now it is %g. diff = %g\n",old_epsilon,epsilon_,epsilon_-old_epsilon);
     624             :       }
     625             :       double old_cutoff;
     626          11 :       ifile.scanField("kernel_cutoff",old_cutoff);
     627          11 :       if(std::abs(cutoff-old_cutoff)>1e-6*cutoff) {
     628           0 :         log.printf(" +++ WARNING +++ previous kernel_cutoff was %g while now it is %g. diff = %g\n",old_cutoff,cutoff,cutoff-old_cutoff);
     629             :       }
     630             :       double old_threshold;
     631          11 :       const double threshold=sqrt(threshold2_);
     632          11 :       ifile.scanField("compression_threshold",old_threshold);
     633          11 :       if(std::abs(threshold-old_threshold)>1e-6*threshold) {
     634           0 :         log.printf(" +++ WARNING +++ previous compression_threshold was %g while now it is %g. diff = %g\n",old_threshold,threshold,threshold-old_threshold);
     635             :       }
     636          11 :       if(stateRestart) {
     637           6 :         ifile.scanField("zed",Zed_);
     638           6 :         ifile.scanField("sum_weights",sum_weights_);
     639           6 :         ifile.scanField("sum_weights2",sum_weights2_);
     640           6 :         ifile.scanField("counter",counter_);
     641           6 :         if(adaptive_sigma_) {
     642           6 :           ifile.scanField("adaptive_counter",adaptive_counter_);
     643           6 :           if(NumWalkers_==1) {
     644           6 :             for(unsigned i=0; i<ncv_; i++) {
     645           8 :               ifile.scanField("sigma0_"+getPntrToArgument(i)->getName(),sigma0_[i]);
     646           8 :               ifile.scanField("av_cv_"+getPntrToArgument(i)->getName(),av_cv_[i]);
     647           8 :               ifile.scanField("av_M2_"+getPntrToArgument(i)->getName(),av_M2_[i]);
     648             :             }
     649             :           } else {
     650          12 :             for(unsigned w=0; w<NumWalkers_; w++)
     651          24 :               for(unsigned i=0; i<ncv_; i++) {
     652             :                 double tmp0,tmp1,tmp2;
     653          32 :                 const std::string arg_iw=getPntrToArgument(i)->getName()+"_"+std::to_string(w);
     654          16 :                 ifile.scanField("sigma0_"+arg_iw,tmp0);
     655          16 :                 ifile.scanField("av_cv_"+arg_iw,tmp1);
     656          16 :                 ifile.scanField("av_M2_"+arg_iw,tmp2);
     657          16 :                 if(w==walker_rank_) {
     658           8 :                   sigma0_[i]=tmp0;
     659           8 :                   av_cv_[i]=tmp1;
     660           8 :                   av_M2_[i]=tmp2;
     661             :                 }
     662             :               }
     663             :           }
     664             :         }
     665             :       }
     666          33 :       for(unsigned i=0; i<ncv_; i++) {
     667          22 :         if(getPntrToArgument(i)->isPeriodic()) {
     668             :           std::string arg_min,arg_max;
     669          22 :           getPntrToArgument(i)->getDomain(arg_min,arg_max);
     670             :           std::string file_min,file_max;
     671          44 :           ifile.scanField("min_"+getPntrToArgument(i)->getName(),file_min);
     672          22 :           ifile.scanField("max_"+getPntrToArgument(i)->getName(),file_max);
     673          22 :           plumed_massert(file_min==arg_min,"RESTART - mismatch between old and new ARG periodicity");
     674          22 :           plumed_massert(file_max==arg_max,"RESTART - mismatch between old and new ARG periodicity");
     675             :         }
     676             :       }
     677          11 :       if(stateRestart) {
     678             :         double time;
     679          60 :         while(ifile.scanField("time",time)) {
     680          24 :           std::vector<double> center(ncv_);
     681          24 :           std::vector<double> sigma(ncv_);
     682             :           double height;
     683          72 :           for(unsigned i=0; i<ncv_; i++) {
     684          48 :             ifile.scanField(getPntrToArgument(i)->getName(),center[i]);
     685             :           }
     686          72 :           for(unsigned i=0; i<ncv_; i++) {
     687          96 :             ifile.scanField("sigma_"+getPntrToArgument(i)->getName(),sigma[i]);
     688             :           }
     689          24 :           ifile.scanField("height",height);
     690          24 :           ifile.scanField();
     691          24 :           kernels_.emplace_back(height,center,sigma);
     692             :         }
     693           6 :         log.printf("    a total of %lu kernels where read\n",kernels_.size());
     694             :       } else {
     695           5 :         ifile.allowIgnoredFields(); //this allows for multiple restart, but without checking for consistency between them!
     696             :         double time;
     697         270 :         while(ifile.scanField("time",time)) {
     698         130 :           std::vector<double> center(ncv_);
     699         130 :           std::vector<double> sigma(ncv_);
     700             :           double height;
     701             :           double logweight;
     702         390 :           for(unsigned i=0; i<ncv_; i++) {
     703         260 :             ifile.scanField(getPntrToArgument(i)->getName(),center[i]);
     704             :           }
     705         390 :           for(unsigned i=0; i<ncv_; i++) {
     706         520 :             ifile.scanField("sigma_"+getPntrToArgument(i)->getName(),sigma[i]);
     707             :           }
     708         130 :           if(counter_==(1+walker_rank_) && adaptive_sigma_) {
     709           0 :             sigma0_=sigma;
     710             :           }
     711         130 :           ifile.scanField("height",height);
     712         130 :           ifile.scanField("logweight",logweight);
     713         130 :           ifile.scanField();
     714         130 :           addKernel(height,center,sigma);
     715         130 :           const double weight=std::exp(logweight);
     716         130 :           sum_weights_+=weight; //this sum is slightly inaccurate, because when printing some precision is lost
     717         130 :           sum_weights2_+=weight*weight;
     718         130 :           counter_++;
     719             :         }
     720           5 :         KDEnorm_=mode::explore?counter_:sum_weights_;
     721           5 :         if(!no_Zed_) {
     722           2 :           double sum_uprob=0;
     723          48 :           for(unsigned k=rank_; k<kernels_.size(); k+=NumParallel_)
     724        1104 :             for(unsigned kk=0; kk<kernels_.size(); kk++) {
     725        1058 :               sum_uprob+=evaluateKernel(kernels_[kk],kernels_[k].center);
     726             :             }
     727           2 :           if(NumParallel_>1) {
     728           0 :             comm.Sum(sum_uprob);
     729             :           }
     730           2 :           Zed_=sum_uprob/KDEnorm_/kernels_.size();
     731             :         }
     732           5 :         log.printf("    a total of %llu kernels where read, and compressed to %lu\n",counter_-1,kernels_.size());
     733             :         convertKernelsToState=true;
     734             :       }
     735          11 :       ifile.reset(false);
     736          11 :       ifile.close();
     737          11 :       nlist_=tmp_nlist;
     738             :     } else { //same behaviour as METAD
     739           0 :       plumed_merror("RESTART requested, but file '"+restartFileName+"' was not found!\n  Set RESTART=NO or provide a restart file");
     740             :     }
     741          11 :     if(NumWalkers_>1) { //make sure that all walkers are doing the same thing
     742           6 :       const unsigned kernels_size=kernels_.size();
     743           6 :       std::vector<unsigned> all_kernels_size(NumWalkers_);
     744           6 :       if(comm.Get_rank()==0) {
     745           6 :         multi_sim_comm.Allgather(kernels_size,all_kernels_size);
     746             :       }
     747           6 :       comm.Bcast(all_kernels_size,0);
     748             :       bool same_number_of_kernels=true;
     749          12 :       for(unsigned w=1; w<NumWalkers_; w++)
     750           6 :         if(all_kernels_size[0]!=all_kernels_size[w]) {
     751             :           same_number_of_kernels=false;
     752             :         }
     753           6 :       plumed_massert(same_number_of_kernels,"RESTART - not all walkers are reading the same file!");
     754             :     }
     755          21 :   } else if(restartFileName.length()>0) {
     756           4 :     log.printf(" +++ WARNING +++ the provided STATE_RFILE will be ignored, since RESTART was not requested\n");
     757             :   }
     758             : 
     759             : //sync all walkers to avoid opening files before reading is over (see also METAD)
     760          21 :   comm.Barrier();
     761          21 :   if(comm.Get_rank()==0 && walkers_mpi) {
     762          10 :     multi_sim_comm.Barrier();
     763             :   }
     764             : 
     765             : //setup output kernels file
     766          21 :   kernelsOfile_.link(*this);
     767          21 :   if(NumWalkers_>1) {
     768          10 :     if(walker_rank_>0) {
     769             :       kernelsFileName="/dev/null";  //only first walker writes on file
     770             :     }
     771          20 :     kernelsOfile_.enforceSuffix("");
     772             :   }
     773          21 :   kernelsOfile_.open(kernelsFileName);
     774          21 :   if(fmt.length()>0) {
     775          42 :     kernelsOfile_.fmtField(" "+fmt);
     776             :   }
     777             :   kernelsOfile_.setHeavyFlush(); //do I need it?
     778             :   //define and set const fields
     779          21 :   kernelsOfile_.addConstantField("action");
     780          21 :   kernelsOfile_.addConstantField("biasfactor");
     781          21 :   kernelsOfile_.addConstantField("epsilon");
     782          21 :   kernelsOfile_.addConstantField("kernel_cutoff");
     783          21 :   kernelsOfile_.addConstantField("compression_threshold");
     784          61 :   for(unsigned i=0; i<ncv_; i++) {
     785          40 :     kernelsOfile_.setupPrintValue(getPntrToArgument(i));
     786             :   }
     787          42 :   kernelsOfile_.printField("action",getName()+"_kernels");
     788          21 :   kernelsOfile_.printField("biasfactor",biasfactor_);
     789          21 :   kernelsOfile_.printField("epsilon",epsilon_);
     790          21 :   kernelsOfile_.printField("kernel_cutoff",sqrt(cutoff2_));
     791          21 :   kernelsOfile_.printField("compression_threshold",sqrt(threshold2_));
     792             : 
     793             : //open file for storing state
     794          21 :   if(wStateStride_!=0) {
     795          11 :     stateOfile_.link(*this);
     796          11 :     if(NumWalkers_>1) {
     797           8 :       if(walker_rank_>0) {
     798             :         stateFileName="/dev/null";  //only first walker writes on file
     799             :       }
     800          16 :       stateOfile_.enforceSuffix("");
     801             :     }
     802          11 :     stateOfile_.open(stateFileName);
     803          11 :     if(fmt.length()>0) {
     804          22 :       stateOfile_.fmtField(" "+fmt);
     805             :     }
     806          11 :     if(convertKernelsToState) {
     807           0 :       dumpStateToFile();
     808             :     }
     809             :   }
     810             : 
     811             : //set initial old values
     812          21 :   KDEnorm_=mode::explore?counter_:sum_weights_;
     813          21 :   old_KDEnorm_=KDEnorm_;
     814             : 
     815             : //add and set output components
     816          42 :   addComponent("rct");
     817          21 :   componentIsNotPeriodic("rct");
     818          42 :   getPntrToComponent("rct")->set(kbt_*std::log(sum_weights_/counter_));
     819          42 :   addComponent("zed");
     820          21 :   componentIsNotPeriodic("zed");
     821          42 :   getPntrToComponent("zed")->set(Zed_);
     822          42 :   addComponent("neff");
     823          21 :   componentIsNotPeriodic("neff");
     824          42 :   getPntrToComponent("neff")->set(std::pow(1+sum_weights_,2)/(1+sum_weights2_));
     825          42 :   addComponent("nker");
     826          21 :   componentIsNotPeriodic("nker");
     827          21 :   getPntrToComponent("nker")->set(kernels_.size());
     828          21 :   if(calc_work_) {
     829          14 :     addComponent("work");
     830          14 :     componentIsNotPeriodic("work");
     831             :   }
     832          21 :   if(nlist_) {
     833          10 :     addComponent("nlker");
     834          10 :     componentIsNotPeriodic("nlker");
     835          10 :     addComponent("nlsteps");
     836          10 :     componentIsNotPeriodic("nlsteps");
     837             :   }
     838             : 
     839             : //printing some info
     840          21 :   log.printf("  temperature = %g\n",kbt_/kB);
     841          21 :   log.printf("  beta = %g\n",1./kbt_);
     842          21 :   log.printf("  depositing new kernels with PACE = %u\n",stride_);
     843          21 :   log.printf("  expected BARRIER is %g\n",barrier);
     844          21 :   log.printf("  using target distribution with BIASFACTOR gamma = %g\n",biasfactor_);
     845          21 :   if(std::isinf(biasfactor_)) {
     846           4 :     log.printf("    (thus a uniform flat target distribution, no well-tempering)\n");
     847             :   }
     848          21 :   if(excluded_region_!=NULL) {
     849           2 :     log.printf(" -- EXCLUDED_REGION: kernels will be deposited only when '%s' is equal to zero\n",excluded_region_->getName().c_str());
     850             :   }
     851          21 :   if(extra_biases_.size()>0) {
     852           2 :     log.printf(" -- EXTRA_BIAS: ");
     853           5 :     for(unsigned e=0; e<extra_biases_.size(); e++) {
     854           3 :       log.printf("%s ",extra_biases_[e]->getName().c_str());
     855             :     }
     856           2 :     log.printf("will be reweighted\n");
     857             :   }
     858          21 :   if(adaptive_sigma_) {
     859          11 :     log.printf("  adaptive SIGMA will be used, with ADAPTIVE_SIGMA_STRIDE = %u\n",adaptive_sigma_stride_);
     860          11 :     unsigned x=std::ceil(adaptive_sigma_stride_/stride_);
     861          11 :     log.printf("    thus the first x kernel depositions will be skipped, x = ADAPTIVE_SIGMA_STRIDE/PACE = %u\n",x);
     862             :   } else {
     863          10 :     log.printf("  kernels have initial SIGMA = ");
     864          29 :     for(unsigned i=0; i<ncv_; i++) {
     865          19 :       log.printf(" %g",sigma0_[i]);
     866             :     }
     867          10 :     log.printf("\n");
     868             :   }
     869          21 :   if(sigma_min_.size()>0) {
     870           3 :     log.printf("  kernels have a SIGMA_MIN = ");
     871           9 :     for(unsigned i=0; i<ncv_; i++) {
     872           6 :       log.printf(" %g",sigma_min_[i]);
     873             :     }
     874           3 :     log.printf("\n");
     875             :   }
     876          21 :   if(fixed_sigma_) {
     877           6 :     log.printf(" -- FIXED_SIGMA: sigma will not decrease as the simulation proceeds\n");
     878             :   }
     879          21 :   log.printf("  kernels are truncated with KERNELS_CUTOFF = %g\n",cutoff);
     880          21 :   if(cutoff<3.5) {
     881           0 :     log.printf(" +++ WARNING +++ probably kernels are truncated too much\n");
     882             :   }
     883          21 :   log.printf("  the value at cutoff is = %g\n",val_at_cutoff_);
     884          21 :   log.printf("  regularization EPSILON = %g\n",epsilon_);
     885          21 :   if(val_at_cutoff_>epsilon_*(1+1e-6)) {
     886           0 :     log.printf(" +++ WARNING +++ the KERNEL_CUTOFF might be too small for the given EPSILON\n");
     887             :   }
     888          21 :   log.printf("  kernels will be compressed when closer than COMPRESSION_THRESHOLD = %g\n",sqrt(threshold2_));
     889          21 :   if(threshold2_==0) {
     890           0 :     log.printf(" +++ WARNING +++ kernels will never merge, expect slowdowns\n");
     891             :   }
     892          21 :   if(!recursive_merge_) {
     893           6 :     log.printf(" -- RECURSIVE_MERGE_OFF: only one merge for each new kernel will be attempted. This is faster only if total number of kernels does not grow too much\n");
     894             :   }
     895          21 :   if(nlist_) {
     896           5 :     log.printf(" -- NLIST: using neighbor list for kernels, with parameters: %g,%g\n",nlist_param_[0],nlist_param_[1]);
     897             :   }
     898          21 :   if(nlist_pace_reset_) {
     899           2 :     log.printf(" -- NLIST_PACE_RESET: forcing the neighbor list to update every PACE\n");
     900             :   }
     901          21 :   if(no_Zed_) {
     902           6 :     log.printf(" -- NO_ZED: using fixed normalization factor = %g\n",Zed_);
     903             :   }
     904          21 :   if(wStateStride_>0) {
     905          10 :     log.printf("  state checkpoints are written on file %s every %d MD steps\n",stateFileName.c_str(),wStateStride_);
     906             :   }
     907          21 :   if(wStateStride_==-1) {
     908           1 :     log.printf("  state checkpoints are written on file %s only on CPT events (or never if MD code does define them!)\n",stateFileName.c_str());
     909             :   }
     910          21 :   if(walkers_mpi) {
     911          10 :     log.printf(" -- WALKERS_MPI: if multiple replicas are present, they will share the same bias via MPI\n");
     912             :   }
     913          21 :   if(NumWalkers_>1) {
     914          10 :     log.printf("  using multiple walkers\n");
     915          10 :     log.printf("    number of walkers: %u\n",NumWalkers_);
     916          10 :     log.printf("    walker rank: %u\n",walker_rank_);
     917             :   }
     918          21 :   int mw_warning=0;
     919          21 :   if(!walkers_mpi && comm.Get_rank()==0 && multi_sim_comm.Get_size()>(int)NumWalkers_) {
     920           0 :     mw_warning=1;
     921             :   }
     922          21 :   comm.Bcast(mw_warning,0);
     923          21 :   if(mw_warning) { //log.printf messes up with comm, so never use it without Bcast!
     924           0 :     log.printf(" +++ WARNING +++ multiple replicas will NOT communicate unless the flag WALKERS_MPI is used\n");
     925             :   }
     926          21 :   if(NumParallel_>1) {
     927           4 :     log.printf("  using multiple MPI processes per simulation: %u\n",NumParallel_);
     928             :   }
     929          21 :   if(NumOMP_>1) {
     930          17 :     log.printf("  using multiple OpenMP threads per simulation: %u\n",NumOMP_);
     931             :   }
     932          21 :   if(serial) {
     933           4 :     log.printf(" -- SERIAL: no loop parallelization, despite %d MPI processes and %u OpenMP threads available\n",comm.Get_size(),OpenMP::getNumThreads());
     934             :   }
     935          21 :   log.printf("  Bibliography: ");
     936          42 :   log<<plumed.cite("M. Invernizzi and M. Parrinello, J. Phys. Chem. Lett. 11, 2731-2736 (2020)");
     937          14 :   if(mode::explore || adaptive_sigma_) {
     938          28 :     log<<plumed.cite("M. Invernizzi and M. Parrinello, J. Chem. Theory Comput. 18, 3988-3996 (2022)");
     939             :   }
     940          21 :   log.printf("\n");
     941          42 : }
     942             : 
     943             : template <class mode>
     944        1071 : void OPESmetad<mode>::calculate() {
     945             : //get cv
     946        1071 :   std::vector<double> cv(ncv_);
     947        3111 :   for(unsigned i=0; i<ncv_; i++) {
     948        2040 :     cv[i]=getArgument(i);
     949             :   }
     950             : 
     951             : //check neighbor list
     952        1071 :   if(nlist_) {
     953         255 :     nlist_steps_++;
     954         255 :     if(getExchangeStep()) {
     955           0 :       nlist_update_=true;
     956             :     } else {
     957         275 :       for(unsigned i=0; i<ncv_; i++) {
     958         270 :         const double diff_i=difference(i,cv[i],nlist_center_[i]);
     959         270 :         if(diff_i*diff_i>nlist_param_[1]*nlist_dev2_[i]) {
     960         250 :           nlist_update_=true;
     961         250 :           break;
     962             :         }
     963             :       }
     964             :     }
     965         255 :     if(nlist_update_) {
     966         250 :       updateNlist(cv);
     967             :     }
     968             :   }
     969             : 
     970             : //set bias and forces
     971        1071 :   std::vector<double> der_prob(ncv_,0);
     972        1071 :   const double prob=getProbAndDerivatives(cv,der_prob);
     973        1071 :   const double bias=kbt_*bias_prefactor_*std::log(prob/Zed_+epsilon_);
     974        1071 :   setBias(bias);
     975        3111 :   for(unsigned i=0; i<ncv_; i++) {
     976        2040 :     setOutputForce(i,-kbt_*bias_prefactor_/(prob/Zed_+epsilon_)*der_prob[i]/Zed_);
     977             :   }
     978        1071 : }
     979             : 
     980             : template <class mode>
     981        1071 : void OPESmetad<mode>::update() {
     982        1071 :   if(isFirstStep_) { //same in MetaD, useful for restarts?
     983          21 :     isFirstStep_=false;
     984          21 :     return;
     985             :   }
     986             : 
     987             : //update variance if adaptive sigma
     988        1050 :   if(adaptive_sigma_) {
     989         550 :     adaptive_counter_++;
     990         550 :     unsigned tau=adaptive_sigma_stride_;
     991         550 :     if(adaptive_counter_<adaptive_sigma_stride_) {
     992          45 :       tau=adaptive_counter_;
     993             :     }
     994        1600 :     for(unsigned i=0; i<ncv_; i++) {
     995             :       //Welford's online algorithm for standard deviation
     996        1050 :       const double cv_i=getArgument(i);
     997        1050 :       const double diff_i=difference(i,av_cv_[i],cv_i);
     998        1050 :       av_cv_[i]+=diff_i/tau; //exponentially decaying average
     999        1050 :       av_M2_[i]+=diff_i*difference(i,av_cv_[i],cv_i);
    1000             :     }
    1001         550 :     if(adaptive_counter_<adaptive_sigma_stride_ && counter_==1) { //counter_>1 if restarting
    1002             :       return;  //do not apply bias before having measured sigma
    1003             :     }
    1004             :   }
    1005             : 
    1006             : //do update
    1007        1005 :   if(getStep()%stride_==0 && (excluded_region_==NULL || excluded_region_->get()==0)) {
    1008         257 :     old_KDEnorm_=KDEnorm_;
    1009         257 :     delta_kernels_.clear();
    1010         257 :     unsigned old_nker=kernels_.size();
    1011             : 
    1012             :     //get new kernel height
    1013         257 :     double log_weight=getOutputQuantity(0)/kbt_; //first value is always the current bias
    1014         277 :     for(unsigned e=0; e<extra_biases_.size(); e++) {
    1015          20 :       log_weight+=extra_biases_[e]->get()/kbt_;  //extra biases contribute to the weight
    1016             :     }
    1017         257 :     double height=std::exp(log_weight);
    1018             : 
    1019             :     //update sum_weights_ and neff
    1020         257 :     double sum_heights=height;
    1021         257 :     double sum_heights2=height*height;
    1022         257 :     if(NumWalkers_>1) {
    1023         126 :       if(comm.Get_rank()==0) {
    1024         126 :         multi_sim_comm.Sum(sum_heights);
    1025         126 :         multi_sim_comm.Sum(sum_heights2);
    1026             :       }
    1027         126 :       comm.Bcast(sum_heights,0);
    1028         126 :       comm.Bcast(sum_heights2,0);
    1029             :     }
    1030         257 :     counter_+=NumWalkers_;
    1031         257 :     sum_weights_+=sum_heights;
    1032         257 :     sum_weights2_+=sum_heights2;
    1033         257 :     const double neff=std::pow(1+sum_weights_,2)/(1+sum_weights2_); //adding 1 makes it more robust at the start
    1034         257 :     getPntrToComponent("rct")->set(kbt_*std::log(sum_weights_/counter_));
    1035         257 :     getPntrToComponent("neff")->set(neff);
    1036             :     if(mode::explore) {
    1037          68 :       KDEnorm_=counter_;
    1038          68 :       height=1; //plain KDE, bias reweight does not enter here
    1039             :     } else {
    1040         189 :       KDEnorm_=sum_weights_;
    1041             :     }
    1042             : 
    1043             :     //if needed, rescale sigma and height
    1044         257 :     std::vector<double> sigma=sigma0_;
    1045         257 :     if(adaptive_sigma_) {
    1046          93 :       const double factor=mode::explore?1:biasfactor_;
    1047         131 :       if(counter_==1+NumWalkers_) { //first time only
    1048          14 :         for(unsigned i=0; i<ncv_; i++) {
    1049           9 :           av_M2_[i]*=biasfactor_;  //from unbiased, thus must be adjusted
    1050             :         }
    1051          14 :         for(unsigned i=0; i<ncv_; i++) {
    1052           9 :           sigma0_[i]=std::sqrt(av_M2_[i]/adaptive_counter_/factor);
    1053             :         }
    1054           5 :         if(sigma_min_.size()==0) {
    1055          14 :           for(unsigned i=0; i<ncv_; i++) {
    1056           9 :             plumed_massert(sigma0_[i]>1e-6,"ADAPTIVE SIGMA is suspiciously small for CV i="+std::to_string(i)+"\nManually provide SIGMA or set a safe SIGMA_MIN to avoid possible issues");
    1057             :           }
    1058             :         } else {
    1059           0 :           for(unsigned i=0; i<ncv_; i++) {
    1060           0 :             sigma0_[i]=std::max(sigma0_[i],sigma_min_[i]);
    1061             :           }
    1062             :         }
    1063             :       }
    1064         388 :       for(unsigned i=0; i<ncv_; i++) {
    1065         257 :         sigma[i]=std::sqrt(av_M2_[i]/adaptive_counter_/factor);
    1066             :       }
    1067         131 :       if(sigma_min_.size()==0) {
    1068         238 :         for(unsigned i=0; i<ncv_; i++) {
    1069         157 :           if(sigma[i]<1e-6) {
    1070           0 :             log.printf("+++ WARNING +++ the ADAPTIVE SIGMA is suspiciously small, you should set a safe SIGMA_MIN. 1e-6 will be used here\n");
    1071           0 :             sigma[i]=1e-6;
    1072           0 :             sigma_min_.resize(ncv_,1e-6);
    1073             :           }
    1074             :         }
    1075             :       } else {
    1076         150 :         for(unsigned i=0; i<ncv_; i++) {
    1077         100 :           sigma[i]=std::max(sigma[i],sigma_min_[i]);
    1078             :         }
    1079             :       }
    1080             :     }
    1081         257 :     if(!fixed_sigma_) {
    1082          38 :       const double size=mode::explore?counter_:neff; //for EXPLORE neff is not relevant
    1083         197 :       const double s_rescaling=std::pow(size*(ncv_+2.)/4.,-1./(4+ncv_));
    1084         576 :       for(unsigned i=0; i<ncv_; i++) {
    1085         379 :         sigma[i]*=s_rescaling;
    1086             :       }
    1087         197 :       if(sigma_min_.size()>0) {
    1088         150 :         for(unsigned i=0; i<ncv_; i++) {
    1089         100 :           sigma[i]=std::max(sigma[i],sigma_min_[i]);
    1090             :         }
    1091             :       }
    1092             :     }
    1093             :     //the height should be divided by sqrt(2*pi)*sigma0_,
    1094             :     //but this overall factor would be canceled when dividing by Zed
    1095             :     //thus we skip it altogether, but keep any other sigma rescaling
    1096         756 :     for(unsigned i=0; i<ncv_; i++) {
    1097         499 :       height*=(sigma0_[i]/sigma[i]);
    1098             :     }
    1099             : 
    1100             :     //get new kernel center
    1101         257 :     std::vector<double> center(ncv_);
    1102         756 :     for(unsigned i=0; i<ncv_; i++) {
    1103         499 :       center[i]=getArgument(i);
    1104             :     }
    1105             : 
    1106             :     //add new kernel(s)
    1107         257 :     if(NumWalkers_==1) {
    1108         131 :       addKernel(height,center,sigma,log_weight);
    1109             :     } else {
    1110         126 :       std::vector<double> all_height(NumWalkers_,0.0);
    1111         126 :       std::vector<double> all_center(NumWalkers_*ncv_,0.0);
    1112         126 :       std::vector<double> all_sigma(NumWalkers_*ncv_,0.0);
    1113         126 :       std::vector<double> all_logweight(NumWalkers_,0.0);
    1114         126 :       if(comm.Get_rank()==0) {
    1115         126 :         multi_sim_comm.Allgather(height,all_height);
    1116         126 :         multi_sim_comm.Allgather(center,all_center);
    1117         126 :         multi_sim_comm.Allgather(sigma,all_sigma);
    1118         126 :         multi_sim_comm.Allgather(log_weight,all_logweight);
    1119             :       }
    1120         126 :       comm.Bcast(all_height,0);
    1121         126 :       comm.Bcast(all_center,0);
    1122         126 :       comm.Bcast(all_sigma,0);
    1123         126 :       comm.Bcast(all_logweight,0);
    1124         126 :       if(nlist_) {
    1125             :         //gather all the nlist_index_, so merging can be done using it
    1126          50 :         std::vector<int> all_nlist_size(NumWalkers_);
    1127          50 :         if(comm.Get_rank()==0) {
    1128          50 :           all_nlist_size[walker_rank_]=nlist_index_.size();
    1129          50 :           multi_sim_comm.Sum(all_nlist_size);
    1130             :         }
    1131          50 :         comm.Bcast(all_nlist_size,0);
    1132             :         unsigned tot_size=0;
    1133         150 :         for(unsigned w=0; w<NumWalkers_; w++) {
    1134         100 :           tot_size+=all_nlist_size[w];
    1135             :         }
    1136          50 :         if(tot_size>0) {
    1137          50 :           std::vector<int> disp(NumWalkers_);
    1138         100 :           for(unsigned w=0; w<NumWalkers_-1; w++) {
    1139          50 :             disp[w+1]=disp[w]+all_nlist_size[w];
    1140             :           }
    1141          50 :           std::vector<unsigned> all_nlist_index(tot_size);
    1142          50 :           if(comm.Get_rank()==0) {
    1143          50 :             multi_sim_comm.Allgatherv(nlist_index_,all_nlist_index,&all_nlist_size[0],&disp[0]);
    1144             :           }
    1145          50 :           comm.Bcast(all_nlist_index,0);
    1146          50 :           std::set<unsigned> nlist_index_set(all_nlist_index.begin(),all_nlist_index.end()); //remove duplicates and sort
    1147          50 :           nlist_index_.assign(nlist_index_set.begin(),nlist_index_set.end());
    1148             :         }
    1149             :       }
    1150         378 :       for(unsigned w=0; w<NumWalkers_; w++) {
    1151         252 :         std::vector<double> center_w(all_center.begin()+ncv_*w,all_center.begin()+ncv_*(w+1));
    1152         252 :         std::vector<double> sigma_w(all_sigma.begin()+ncv_*w,all_sigma.begin()+ncv_*(w+1));
    1153         252 :         addKernel(all_height[w],center_w,sigma_w,all_logweight[w]);
    1154             :       }
    1155             :     }
    1156         257 :     getPntrToComponent("nker")->set(kernels_.size());
    1157         257 :     if(nlist_) {
    1158         106 :       getPntrToComponent("nlker")->set(nlist_index_.size());
    1159         106 :       if(nlist_pace_reset_) {
    1160          50 :         nlist_update_=true;
    1161             :       }
    1162             :     }
    1163             : 
    1164             :     //update Zed_
    1165         257 :     if(!no_Zed_) {
    1166         197 :       double sum_uprob=0;
    1167         197 :       const unsigned ks=kernels_.size();
    1168         197 :       const unsigned ds=delta_kernels_.size();
    1169         197 :       const bool few_kernels=(ks*ks<(3*ks*ds+2*ds*ds*NumParallel_+100)); //this seems reasonable, but is not rigorous...
    1170         197 :       if(few_kernels) { //really needed? Probably is almost always false
    1171         147 :         #pragma omp parallel num_threads(NumOMP_)
    1172             :         {
    1173             :           #pragma omp for reduction(+:sum_uprob) nowait
    1174             :           for(unsigned k=rank_; k<kernels_.size(); k+=NumParallel_)
    1175             :             for(unsigned kk=0; kk<kernels_.size(); kk++) {
    1176             :               sum_uprob+=evaluateKernel(kernels_[kk],kernels_[k].center);
    1177             :             }
    1178             :         }
    1179         147 :         if(NumParallel_>1) {
    1180          50 :           comm.Sum(sum_uprob);
    1181             :         }
    1182             :       } else {
    1183             :         // Here instead of redoing the full summation, we add only the changes, knowing that
    1184             :         // uprob = old_uprob + delta_uprob
    1185             :         // and we also need to consider that in the new sum there are some novel centers and some disappeared ones
    1186          50 :         double delta_sum_uprob=0;
    1187          50 :         if(!nlist_) {
    1188           0 :           #pragma omp parallel num_threads(NumOMP_)
    1189             :           {
    1190             :             #pragma omp for reduction(+:delta_sum_uprob) nowait
    1191             :             for(unsigned k=rank_; k<kernels_.size(); k+=NumParallel_) {
    1192             :               for(unsigned d=0; d<delta_kernels_.size(); d++) {
    1193             :                 const double sign=delta_kernels_[d].height<0?-1:1; //take away contribution from kernels that are gone, and add the one from new ones
    1194             :                 delta_sum_uprob+=evaluateKernel(delta_kernels_[d],kernels_[k].center)+sign*evaluateKernel(kernels_[k],delta_kernels_[d].center);
    1195             :               }
    1196             :             }
    1197             :           }
    1198             :         } else {
    1199          50 :           #pragma omp parallel num_threads(NumOMP_)
    1200             :           {
    1201             :             #pragma omp for reduction(+:delta_sum_uprob) nowait
    1202             :             for(unsigned nk=rank_; nk<nlist_index_.size(); nk+=NumParallel_) {
    1203             :               const unsigned k=nlist_index_[nk];
    1204             :               for(unsigned d=0; d<delta_kernels_.size(); d++) {
    1205             :                 const double sign=delta_kernels_[d].height<0?-1:1; //take away contribution from kernels that are gone, and add the one from new ones
    1206             :                 delta_sum_uprob+=evaluateKernel(delta_kernels_[d],kernels_[k].center)+sign*evaluateKernel(kernels_[k],delta_kernels_[d].center);
    1207             :               }
    1208             :             }
    1209             :           }
    1210             :         }
    1211          50 :         if(NumParallel_>1) {
    1212           0 :           comm.Sum(delta_sum_uprob);
    1213             :         }
    1214          50 :         #pragma omp parallel num_threads(NumOMP_)
    1215             :         {
    1216             :           #pragma omp for reduction(+:delta_sum_uprob)
    1217             :           for(unsigned d=0; d<delta_kernels_.size(); d++) {
    1218             :             for(unsigned dd=0; dd<delta_kernels_.size(); dd++) {
    1219             :               //now subtract the delta_uprob added before, but not needed
    1220             :               const double sign=delta_kernels_[d].height<0?-1:1;
    1221             :               delta_sum_uprob-=sign*evaluateKernel(delta_kernels_[dd],delta_kernels_[d].center);
    1222             :             }
    1223             :           }
    1224             :         }
    1225          50 :         sum_uprob=Zed_*old_KDEnorm_*old_nker+delta_sum_uprob;
    1226             :       }
    1227         197 :       Zed_=sum_uprob/KDEnorm_/kernels_.size();
    1228         394 :       getPntrToComponent("zed")->set(Zed_);
    1229             :     }
    1230             : 
    1231             :     //calculate work if requested
    1232         257 :     if(calc_work_) {
    1233          70 :       std::vector<double> dummy(ncv_); //derivatives are not actually needed
    1234          70 :       const double prob=getProbAndDerivatives(center,dummy);
    1235          70 :       const double new_bias=kbt_*bias_prefactor_*std::log(prob/Zed_+epsilon_);
    1236          70 :       work_+=new_bias-getOutputQuantity(0);
    1237         140 :       getPntrToComponent("work")->set(work_);
    1238             :     }
    1239             :   }
    1240             : 
    1241             : //dump state if requested
    1242        1005 :   if( (wStateStride_>0 && getStep()%wStateStride_==0) || (wStateStride_==-1 && getCPT()) ) {
    1243          18 :     dumpStateToFile();
    1244             :   }
    1245             : }
    1246             : 
    1247             : template <class mode>
    1248        1141 : double OPESmetad<mode>::getProbAndDerivatives(const std::vector<double>& cv,std::vector<double>& der_prob) {
    1249        1141 :   double prob=0.0;
    1250        1141 :   if(!nlist_) {
    1251         886 :     if(NumOMP_==1 || (unsigned)kernels_.size()<2*NumOMP_*NumParallel_) {
    1252             :       // for performances and thread safety
    1253         707 :       std::vector<double> dist(ncv_);
    1254        2647 :       for(unsigned k=rank_; k<kernels_.size(); k+=NumParallel_) {
    1255        1940 :         prob+=evaluateKernel(kernels_[k],cv,der_prob,dist);
    1256             :       }
    1257             :     } else {
    1258         179 :       #pragma omp parallel num_threads(NumOMP_)
    1259             :       {
    1260             :         std::vector<double> omp_deriv(der_prob.size(),0.);
    1261             :         // for performances and thread safety
    1262             :         std::vector<double> dist(ncv_);
    1263             :         #pragma omp for reduction(+:prob) nowait
    1264             :         for(unsigned k=rank_; k<kernels_.size(); k+=NumParallel_) {
    1265             :           prob+=evaluateKernel(kernels_[k],cv,omp_deriv,dist);
    1266             :         }
    1267             :         #pragma omp critical
    1268             :         for(unsigned i=0; i<ncv_; i++) {
    1269             :           der_prob[i]+=omp_deriv[i];
    1270             :         }
    1271             :       }
    1272             :     }
    1273             :   } else {
    1274         255 :     if(NumOMP_==1 || (unsigned)nlist_index_.size()<2*NumOMP_*NumParallel_) {
    1275             :       // for performances and thread safety
    1276         230 :       std::vector<double> dist(ncv_);
    1277         660 :       for(unsigned nk=rank_; nk<nlist_index_.size(); nk+=NumParallel_) {
    1278         430 :         prob+=evaluateKernel(kernels_[nlist_index_[nk]],cv,der_prob,dist);
    1279             :       }
    1280             :     } else {
    1281          25 :       #pragma omp parallel num_threads(NumOMP_)
    1282             :       {
    1283             :         std::vector<double> omp_deriv(der_prob.size(),0.);
    1284             :         // for performances and thread safety
    1285             :         std::vector<double> dist(ncv_);
    1286             :         #pragma omp for reduction(+:prob) nowait
    1287             :         for(unsigned nk=rank_; nk<nlist_index_.size(); nk+=NumParallel_) {
    1288             :           prob+=evaluateKernel(kernels_[nlist_index_[nk]],cv,omp_deriv,dist);
    1289             :         }
    1290             :         #pragma omp critical
    1291             :         for(unsigned i=0; i<ncv_; i++) {
    1292             :           der_prob[i]+=omp_deriv[i];
    1293             :         }
    1294             :       }
    1295             :     }
    1296             :   }
    1297        1141 :   if(NumParallel_>1) {
    1298         224 :     comm.Sum(prob);
    1299         224 :     comm.Sum(der_prob);
    1300             :   }
    1301             : //normalize the estimate
    1302        1141 :   prob/=KDEnorm_;
    1303        3311 :   for(unsigned i=0; i<ncv_; i++) {
    1304        2170 :     der_prob[i]/=KDEnorm_;
    1305             :   }
    1306             : 
    1307        1141 :   return prob;
    1308             : }
    1309             : 
    1310             : template <class mode>
    1311         513 : void OPESmetad<mode>::addKernel(const double height,const std::vector<double>& center,const std::vector<double>& sigma) {
    1312             :   bool no_match=true;
    1313         513 :   if(threshold2_!=0) {
    1314         513 :     unsigned taker_k=getMergeableKernel(center,kernels_.size());
    1315         513 :     if(taker_k<kernels_.size()) {
    1316             :       no_match=false;
    1317         388 :       delta_kernels_.emplace_back(-1*kernels_[taker_k].height,kernels_[taker_k].center,kernels_[taker_k].sigma);
    1318         776 :       mergeKernels(kernels_[taker_k],kernel(height,center,sigma));
    1319         388 :       delta_kernels_.push_back(kernels_[taker_k]);
    1320         388 :       if(recursive_merge_) { //the overhead is worth it if it keeps low the total number of kernels
    1321             :         unsigned giver_k=taker_k;
    1322         337 :         taker_k=getMergeableKernel(kernels_[giver_k].center,giver_k);
    1323         337 :         while(taker_k<kernels_.size()) {
    1324           0 :           delta_kernels_.pop_back();
    1325           0 :           delta_kernels_.emplace_back(-1*kernels_[taker_k].height,kernels_[taker_k].center,kernels_[taker_k].sigma);
    1326           0 :           if(taker_k>giver_k) { //saves time when erasing
    1327             :             std::swap(taker_k,giver_k);
    1328             :           }
    1329           0 :           mergeKernels(kernels_[taker_k],kernels_[giver_k]);
    1330           0 :           delta_kernels_.push_back(kernels_[taker_k]);
    1331           0 :           kernels_.erase(kernels_.begin()+giver_k);
    1332           0 :           if(nlist_) {
    1333             :             unsigned giver_nk=0;
    1334             :             bool found_giver=false;
    1335           0 :             for(unsigned nk=0; nk<nlist_index_.size(); nk++) {
    1336           0 :               if(found_giver) {
    1337           0 :                 nlist_index_[nk]--;  //all the indexes shift due to erase
    1338             :               }
    1339           0 :               if(nlist_index_[nk]==giver_k) {
    1340             :                 giver_nk=nk;
    1341             :                 found_giver=true;
    1342             :               }
    1343             :             }
    1344             :             plumed_dbg_massert(found_giver,"problem with merging and NLIST");
    1345           0 :             nlist_index_.erase(nlist_index_.begin()+giver_nk);
    1346             :           }
    1347             :           giver_k=taker_k;
    1348           0 :           taker_k=getMergeableKernel(kernels_[giver_k].center,giver_k);
    1349             :         }
    1350             :       }
    1351             :     }
    1352             :   }
    1353             :   if(no_match) {
    1354         125 :     kernels_.emplace_back(height,center,sigma);
    1355         125 :     delta_kernels_.emplace_back(height,center,sigma);
    1356         125 :     if(nlist_) {
    1357          12 :       nlist_index_.push_back(kernels_.size()-1);
    1358             :     }
    1359             :   }
    1360         513 : }
    1361             : 
    1362             : template <class mode>
    1363         383 : void OPESmetad<mode>::addKernel(const double height,const std::vector<double>& center,const std::vector<double>& sigma,const double logweight) {
    1364         383 :   addKernel(height,center,sigma);
    1365             : //write to file
    1366         383 :   kernelsOfile_.printField("time",getTime());
    1367        1134 :   for(unsigned i=0; i<ncv_; i++) {
    1368         751 :     kernelsOfile_.printField(getPntrToArgument(i),center[i]);
    1369             :   }
    1370        1134 :   for(unsigned i=0; i<ncv_; i++) {
    1371        1502 :     kernelsOfile_.printField("sigma_"+getPntrToArgument(i)->getName(),sigma[i]);
    1372             :   }
    1373         383 :   kernelsOfile_.printField("height",height);
    1374         383 :   kernelsOfile_.printField("logweight",logweight);
    1375         383 :   kernelsOfile_.printField();
    1376         383 : }
    1377             : 
    1378             : template <class mode>
    1379         850 : unsigned OPESmetad<mode>::getMergeableKernel(const std::vector<double>& giver_center,const unsigned giver_k) {
    1380             :   //returns kernels_.size() if no match is found
    1381         850 :   unsigned min_k=kernels_.size();
    1382         850 :   double min_norm2=threshold2_;
    1383         850 :   if(!nlist_) {
    1384         550 :     #pragma omp parallel num_threads(NumOMP_)
    1385             :     {
    1386             :       unsigned min_k_omp = min_k;
    1387             :       double min_norm2_omp = threshold2_;
    1388             :       #pragma omp for nowait
    1389             :       for(unsigned k=rank_; k<kernels_.size(); k+=NumParallel_) {
    1390             :         if(k==giver_k) { //a kernel should not be merged with itself
    1391             :           continue;
    1392             :         }
    1393             :         double norm2=0;
    1394             :         for(unsigned i=0; i<ncv_; i++) {
    1395             :           const double dist_i=difference(i,giver_center[i],kernels_[k].center[i])/kernels_[k].sigma[i];
    1396             :           norm2+=dist_i*dist_i;
    1397             :           if(norm2>=min_norm2_omp) {
    1398             :             break;
    1399             :           }
    1400             :         }
    1401             :         if(norm2<min_norm2_omp) {
    1402             :           min_norm2_omp=norm2;
    1403             :           min_k_omp=k;
    1404             :         }
    1405             :       }
    1406             :       #pragma omp critical
    1407             :       {
    1408             :         if(min_norm2_omp < min_norm2) {
    1409             :           min_norm2 = min_norm2_omp;
    1410             :           min_k = min_k_omp;
    1411             :         }
    1412             :       }
    1413             :     }
    1414             :   } else {
    1415         300 :     #pragma omp parallel num_threads(NumOMP_)
    1416             :     {
    1417             :       unsigned min_k_omp = min_k;
    1418             :       double min_norm2_omp = threshold2_;
    1419             :       #pragma omp for nowait
    1420             :       for(unsigned nk=rank_; nk<nlist_index_.size(); nk+=NumParallel_) {
    1421             :         const unsigned k=nlist_index_[nk];
    1422             :         if(k==giver_k) { //a kernel should not be merged with itself
    1423             :           continue;
    1424             :         }
    1425             :         double norm2=0;
    1426             :         for(unsigned i=0; i<ncv_; i++) {
    1427             :           const double dist_i=difference(i,giver_center[i],kernels_[k].center[i])/kernels_[k].sigma[i];
    1428             :           norm2+=dist_i*dist_i;
    1429             :           if(norm2>=min_norm2) {
    1430             :             break;
    1431             :           }
    1432             :         }
    1433             :         if(norm2<min_norm2_omp) {
    1434             :           min_norm2_omp=norm2;
    1435             :           min_k_omp=k;
    1436             :         }
    1437             :       }
    1438             :       #pragma omp critical
    1439             :       {
    1440             :         if(min_norm2_omp < min_norm2) {
    1441             :           min_norm2 = min_norm2_omp;
    1442             :           min_k = min_k_omp;
    1443             :         }
    1444             :       }
    1445             :     }
    1446             :   }
    1447         850 :   if(NumParallel_>1) {
    1448         134 :     std::vector<double> all_min_norm2(NumParallel_);
    1449         134 :     std::vector<unsigned> all_min_k(NumParallel_);
    1450         134 :     comm.Allgather(min_norm2,all_min_norm2);
    1451         134 :     comm.Allgather(min_k,all_min_k);
    1452             :     const unsigned best=std::distance(std::begin(all_min_norm2),std::min_element(std::begin(all_min_norm2),std::end(all_min_norm2)));
    1453         134 :     min_k=all_min_k[best];
    1454             :   }
    1455         850 :   return min_k;
    1456             : }
    1457             : 
    1458             : template <class mode>
    1459         250 : void OPESmetad<mode>::updateNlist(const std::vector<double>& new_center) {
    1460         250 :   if(kernels_.size()==0) { //no need to check for neighbors
    1461           6 :     return;
    1462             :   }
    1463             : 
    1464         244 :   nlist_center_=new_center;
    1465         244 :   nlist_index_.clear();
    1466             :   //first we gather all the nlist_index
    1467         244 :   if(NumOMP_==1 || (unsigned)kernels_.size()<2*NumOMP_*NumParallel_) {
    1468         198 :     for(unsigned k=rank_; k<kernels_.size(); k+=NumParallel_) {
    1469             :       double norm2_k=0;
    1470         444 :       for(unsigned i=0; i<ncv_; i++) {
    1471         296 :         const double dist_ik=difference(i,nlist_center_[i],kernels_[k].center[i])/kernels_[k].sigma[i];
    1472         296 :         norm2_k+=dist_ik*dist_ik;
    1473             :       }
    1474         148 :       if(norm2_k<=nlist_param_[0]*cutoff2_) {
    1475         104 :         nlist_index_.push_back(k);
    1476             :       }
    1477             :     }
    1478             :   } else {
    1479         194 :     #pragma omp parallel num_threads(NumOMP_)
    1480             :     {
    1481             :       std::vector<unsigned> private_nlist_index;
    1482             :       #pragma omp for nowait
    1483             :       for(unsigned k=rank_; k<kernels_.size(); k+=NumParallel_) {
    1484             :         double norm2_k=0;
    1485             :         for(unsigned i=0; i<ncv_; i++) {
    1486             :           const double dist_ik=difference(i,nlist_center_[i],kernels_[k].center[i])/kernels_[k].sigma[i];
    1487             :           norm2_k+=dist_ik*dist_ik;
    1488             :         }
    1489             :         if(norm2_k<=nlist_param_[0]*cutoff2_) {
    1490             :           private_nlist_index.push_back(k);
    1491             :         }
    1492             :       }
    1493             :       #pragma omp critical
    1494             :       nlist_index_.insert(nlist_index_.end(),private_nlist_index.begin(),private_nlist_index.end());
    1495             :     }
    1496         194 :     if(recursive_merge_) {
    1497         194 :       std::sort(nlist_index_.begin(),nlist_index_.end());
    1498             :     }
    1499             :   }
    1500         244 :   if(NumParallel_>1) {
    1501         100 :     std::vector<int> all_nlist_size(NumParallel_);
    1502         100 :     all_nlist_size[rank_]=nlist_index_.size();
    1503         100 :     comm.Sum(all_nlist_size);
    1504             :     unsigned tot_size=0;
    1505         300 :     for(unsigned r=0; r<NumParallel_; r++) {
    1506         200 :       tot_size+=all_nlist_size[r];
    1507             :     }
    1508         100 :     if(tot_size>0) {
    1509         100 :       std::vector<int> disp(NumParallel_);
    1510         200 :       for(unsigned r=0; r<NumParallel_-1; r++) {
    1511         100 :         disp[r+1]=disp[r]+all_nlist_size[r];
    1512             :       }
    1513         100 :       std::vector<unsigned> local_nlist_index=nlist_index_;
    1514         100 :       nlist_index_.resize(tot_size);
    1515         100 :       comm.Allgatherv(local_nlist_index,nlist_index_,&all_nlist_size[0],&disp[0]);
    1516         100 :       if(recursive_merge_) {
    1517         100 :         std::sort(nlist_index_.begin(),nlist_index_.end());
    1518             :       }
    1519             :     }
    1520             :   }
    1521             :   //calculate the square deviation
    1522         244 :   std::vector<double> dev2(ncv_,0.);
    1523         773 :   for(unsigned k=rank_; k<nlist_index_.size(); k+=NumParallel_) {
    1524        1587 :     for(unsigned i=0; i<ncv_; i++) {
    1525        1058 :       const double diff_ik=difference(i,nlist_center_[i],kernels_[nlist_index_[k]].center[i]);
    1526        1058 :       dev2[i]+=diff_ik*diff_ik;
    1527             :     }
    1528             :   }
    1529         244 :   if(NumParallel_>1) {
    1530         100 :     comm.Sum(dev2);
    1531             :   }
    1532         732 :   for(unsigned i=0; i<ncv_; i++) {
    1533         488 :     if(dev2[i]==0) { //e.g. if nlist_index_.size()==0
    1534          56 :       nlist_dev2_[i]=std::pow(kernels_.back().sigma[i],2);
    1535             :     } else {
    1536         432 :       nlist_dev2_[i]=dev2[i]/nlist_index_.size();
    1537             :     }
    1538             :   }
    1539         244 :   getPntrToComponent("nlker")->set(nlist_index_.size());
    1540         244 :   getPntrToComponent("nlsteps")->set(nlist_steps_);
    1541         244 :   nlist_steps_=0;
    1542         244 :   nlist_update_=false;
    1543             : }
    1544             : 
    1545             : template <class mode>
    1546          18 : void OPESmetad<mode>::dumpStateToFile() {
    1547             : //gather adaptive sigma info if needed
    1548             : //doing this while writing to file can lead to misterious slowdowns
    1549             :   std::vector<double> all_sigma0;
    1550             :   std::vector<double> all_av_cv;
    1551             :   std::vector<double> all_av_M2;
    1552          18 :   if(adaptive_sigma_ && NumWalkers_>1) {
    1553          16 :     all_sigma0.resize(NumWalkers_*ncv_);
    1554          16 :     all_av_cv.resize(NumWalkers_*ncv_);
    1555          16 :     all_av_M2.resize(NumWalkers_*ncv_);
    1556          16 :     if(comm.Get_rank()==0) {
    1557          16 :       multi_sim_comm.Allgather(sigma0_,all_sigma0);
    1558          16 :       multi_sim_comm.Allgather(av_cv_,all_av_cv);
    1559          16 :       multi_sim_comm.Allgather(av_M2_,all_av_M2);
    1560             :     }
    1561          16 :     comm.Bcast(all_sigma0,0);
    1562          16 :     comm.Bcast(all_av_cv,0);
    1563          16 :     comm.Bcast(all_av_M2,0);
    1564             :   }
    1565             : 
    1566             : //rewrite header or rewind file
    1567          18 :   if(storeOldStates_) {
    1568          16 :     stateOfile_.clearFields();
    1569           2 :   } else if(walker_rank_==0) {
    1570           2 :     stateOfile_.rewind();
    1571             :   }
    1572             : //define fields
    1573          18 :   stateOfile_.addConstantField("action");
    1574          18 :   stateOfile_.addConstantField("biasfactor");
    1575          18 :   stateOfile_.addConstantField("epsilon");
    1576          18 :   stateOfile_.addConstantField("kernel_cutoff");
    1577          18 :   stateOfile_.addConstantField("compression_threshold");
    1578          18 :   stateOfile_.addConstantField("zed");
    1579          18 :   stateOfile_.addConstantField("sum_weights");
    1580          18 :   stateOfile_.addConstantField("sum_weights2");
    1581          18 :   stateOfile_.addConstantField("counter");
    1582          18 :   if(adaptive_sigma_) {
    1583          18 :     stateOfile_.addConstantField("adaptive_counter");
    1584          18 :     if(NumWalkers_==1) {
    1585           6 :       for(unsigned i=0; i<ncv_; i++) {
    1586           8 :         stateOfile_.addConstantField("sigma0_"+getPntrToArgument(i)->getName());
    1587           8 :         stateOfile_.addConstantField("av_cv_"+getPntrToArgument(i)->getName());
    1588           8 :         stateOfile_.addConstantField("av_M2_"+getPntrToArgument(i)->getName());
    1589             :       }
    1590             :     } else {
    1591          48 :       for(unsigned w=0; w<NumWalkers_; w++)
    1592          96 :         for(unsigned i=0; i<ncv_; i++) {
    1593         128 :           const std::string arg_iw=getPntrToArgument(i)->getName()+"_"+std::to_string(w);
    1594          64 :           stateOfile_.addConstantField("sigma0_"+arg_iw);
    1595          64 :           stateOfile_.addConstantField("av_cv_"+arg_iw);
    1596         128 :           stateOfile_.addConstantField("av_M2_"+arg_iw);
    1597             :         }
    1598             :     }
    1599             :   }
    1600             : //print fields
    1601          54 :   for(unsigned i=0; i<ncv_; i++) { //periodicity of CVs
    1602          36 :     stateOfile_.setupPrintValue(getPntrToArgument(i));
    1603             :   }
    1604          36 :   stateOfile_.printField("action",getName()+"_state");
    1605          18 :   stateOfile_.printField("biasfactor",biasfactor_);
    1606          18 :   stateOfile_.printField("epsilon",epsilon_);
    1607          18 :   stateOfile_.printField("kernel_cutoff",sqrt(cutoff2_));
    1608          18 :   stateOfile_.printField("compression_threshold",sqrt(threshold2_));
    1609          18 :   stateOfile_.printField("zed",Zed_);
    1610          18 :   stateOfile_.printField("sum_weights",sum_weights_);
    1611          18 :   stateOfile_.printField("sum_weights2",sum_weights2_);
    1612          18 :   stateOfile_.printField("counter",counter_);
    1613          18 :   if(adaptive_sigma_) {
    1614          18 :     stateOfile_.printField("adaptive_counter",adaptive_counter_);
    1615          18 :     if(NumWalkers_==1) {
    1616           6 :       for(unsigned i=0; i<ncv_; i++) {
    1617           8 :         stateOfile_.printField("sigma0_"+getPntrToArgument(i)->getName(),sigma0_[i]);
    1618           8 :         stateOfile_.printField("av_cv_"+getPntrToArgument(i)->getName(),av_cv_[i]);
    1619           8 :         stateOfile_.printField("av_M2_"+getPntrToArgument(i)->getName(),av_M2_[i]);
    1620             :       }
    1621             :     } else {
    1622          48 :       for(unsigned w=0; w<NumWalkers_; w++)
    1623          96 :         for(unsigned i=0; i<ncv_; i++) {
    1624         128 :           const std::string arg_iw=getPntrToArgument(i)->getName()+"_"+std::to_string(w);
    1625          64 :           stateOfile_.printField("sigma0_"+arg_iw,all_sigma0[w*ncv_+i]);
    1626          64 :           stateOfile_.printField("av_cv_"+arg_iw,all_av_cv[w*ncv_+i]);
    1627         128 :           stateOfile_.printField("av_M2_"+arg_iw,all_av_M2[w*ncv_+i]);
    1628             :         }
    1629             :     }
    1630             :   }
    1631             : //print kernels
    1632          82 :   for(unsigned k=0; k<kernels_.size(); k++) {
    1633          64 :     stateOfile_.printField("time",getTime()); //this is not very usefull
    1634         192 :     for(unsigned i=0; i<ncv_; i++) {
    1635         128 :       stateOfile_.printField(getPntrToArgument(i),kernels_[k].center[i]);
    1636             :     }
    1637         192 :     for(unsigned i=0; i<ncv_; i++) {
    1638         256 :       stateOfile_.printField("sigma_"+getPntrToArgument(i)->getName(),kernels_[k].sigma[i]);
    1639             :     }
    1640          64 :     stateOfile_.printField("height",kernels_[k].height);
    1641          64 :     stateOfile_.printField();
    1642             :   }
    1643             : //make sure file is written even if small
    1644          18 :   if(!storeOldStates_) {
    1645           2 :     stateOfile_.flush();
    1646             :   }
    1647          18 : }
    1648             : 
    1649             : template <class mode>
    1650        5969 : inline double OPESmetad<mode>::evaluateKernel(const kernel& G,const std::vector<double>& x) const {
    1651             :   //NB: cannot be a method of kernel class, because uses external variables (for cutoff)
    1652             :   double norm2=0;
    1653       13923 :   for(unsigned i=0; i<ncv_; i++) {
    1654       10288 :     const double dist_i=difference(i,G.center[i],x[i])/G.sigma[i];
    1655       10288 :     norm2+=dist_i*dist_i;
    1656       10288 :     if(norm2>=cutoff2_) {
    1657             :       return 0;
    1658             :     }
    1659             :   }
    1660        3635 :   return G.height*(std::exp(-0.5*norm2)-val_at_cutoff_);
    1661             : }
    1662             : 
    1663             : template <class mode>
    1664        3364 : inline double OPESmetad<mode>::evaluateKernel(const kernel& G,const std::vector<double>& x, std::vector<double>& acc_der, std::vector<double>& dist) {
    1665             :   //NB: cannot be a method of kernel class, because uses external variables (for cutoff)
    1666             :   double norm2=0;
    1667        7483 :   for(unsigned i=0; i<ncv_; i++) {
    1668        5578 :     dist[i]=difference(i,G.center[i],x[i])/G.sigma[i];
    1669        5578 :     norm2+=dist[i]*dist[i];
    1670        5578 :     if(norm2>=cutoff2_) {
    1671             :       return 0;
    1672             :     }
    1673             :   }
    1674        1905 :   const double val=G.height*(std::exp(-0.5*norm2)-val_at_cutoff_);
    1675        5576 :   for(unsigned i=0; i<ncv_; i++) {
    1676        3671 :     acc_der[i]-=dist[i]/G.sigma[i]*val;  //NB: we accumulate the derivative into der
    1677             :   }
    1678             :   return val;
    1679             : }
    1680             : 
    1681             : template <class mode>
    1682         388 : inline void OPESmetad<mode>::mergeKernels(kernel& k1,const kernel& k2) {
    1683         388 :   const double h=k1.height+k2.height;
    1684        1159 :   for(unsigned i=0; i<k1.center.size(); i++) {
    1685         771 :     const bool isPeriodic_i=getPntrToArgument(i)->isPeriodic();
    1686         771 :     if(isPeriodic_i) {
    1687         771 :       k1.center[i]=k2.center[i]+difference(i,k2.center[i],k1.center[i]);  //fix PBC
    1688             :     }
    1689         771 :     const double c_i=(k1.height*k1.center[i]+k2.height*k2.center[i])/h;
    1690         771 :     const double ss_k1_part=k1.height*(k1.sigma[i]*k1.sigma[i]+k1.center[i]*k1.center[i]);
    1691         771 :     const double ss_k2_part=k2.height*(k2.sigma[i]*k2.sigma[i]+k2.center[i]*k2.center[i]);
    1692         771 :     const double ss_i=(ss_k1_part+ss_k2_part)/h-c_i*c_i;
    1693         771 :     if(isPeriodic_i) {
    1694         771 :       k1.center[i]=bringBackInPbc(i,c_i);
    1695             :     } else {
    1696           0 :       k1.center[i]=c_i;
    1697             :     }
    1698         771 :     k1.sigma[i]=sqrt(ss_i);
    1699             :   }
    1700         388 :   k1.height=h;
    1701         388 : }
    1702             : 
    1703             : }
    1704             : }

Generated by: LCOV version 1.16