LCOV - code coverage report
Current view: top level - tools - OptimalAlignment.cpp (source / functions) Hit Total Coverage
Test: plumed test coverage Lines: 1 178 0.6 %
Date: 2018-12-19 07:49:13 Functions: 2 11 18.2 %

          Line data    Source code
       1             : /* +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
       2             :    Copyright (c) 2011-2018 The plumed team
       3             :    (see the PEOPLE file at the root of the distribution for a list of names)
       4             : 
       5             :    See http://www.plumed.org for more information.
       6             : 
       7             :    This file is part of plumed, version 2.
       8             : 
       9             :    plumed is free software: you can redistribute it and/or modify
      10             :    it under the terms of the GNU Lesser General Public License as published by
      11             :    the Free Software Foundation, either version 3 of the License, or
      12             :    (at your option) any later version.
      13             : 
      14             :    plumed is distributed in the hope that it will be useful,
      15             :    but WITHOUT ANY WARRANTY; without even the implied warranty of
      16             :    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
      17             :    GNU Lesser General Public License for more details.
      18             : 
      19             :    You should have received a copy of the GNU Lesser General Public License
      20             :    along with plumed.  If not, see <http://www.gnu.org/licenses/>.
      21             : +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ */
      22             : #include "OptimalAlignment.h"
      23             : #include "Kearsley.h"
      24             : #include "Log.h"
      25             : #include <cmath>
      26             : #include <iostream>
      27             : #include <cstdlib>
      28             : #include "Random.h"
      29             : 
      30             : using namespace std;
      31             : namespace PLMD {
      32             : 
      33           0 : OptimalAlignment::OptimalAlignment( const  std::vector<double>  & align, const  std::vector<double>  & displace, const std::vector<Vector> & p0, const std::vector<Vector> & p1, Log* &log )
      34           0 :   :log(log) {
      35             : 
      36             :   // kearsley init to null
      37           0 :   mykearsley=NULL;
      38           0 :   if (mykearsley==NULL) {
      39           0 :     mykearsley=new Kearsley(p0,p1,align,log);
      40             :   }
      41             :   // copy the structure into place
      42           0 :   assignP0(p0);
      43           0 :   assignP1(p1);
      44           0 :   assignAlign(align);
      45           0 :   assignDisplace(displace);
      46             : 
      47             :   // basic check
      48           0 :   if(p0.size() != p1.size()) {
      49           0 :     (this->log)->printf("THE SIZE OF THE TWO FRAMES TO BE ALIGNED ARE DIFFERENT\n");
      50             :   }
      51             :   // fast behaviour: if all the alignment and displacement are 1.0 then go for fast
      52           0 :   fast=true;
      53           0 :   for (unsigned i=0; i<align.size(); i++ ) {
      54           0 :     if(align[i]!=displace[i] || align[i]!=1.0)fast=false;
      55             :   }
      56             : 
      57           0 : }
      58             : 
      59           0 : OptimalAlignment::~OptimalAlignment() {
      60           0 :   if (mykearsley!=NULL)delete mykearsley;
      61           0 : }
      62             : 
      63           0 : void OptimalAlignment::assignP0(  const std::vector<Vector> & p0 ) {
      64           0 :   this->p0=p0;
      65           0 :   if(mykearsley!=NULL) {mykearsley->assignP0(p0);} else {cerr<<"kearsley is not initialized"<<endl; exit(0);}
      66           0 : }
      67             : 
      68           0 : void OptimalAlignment::assignP1(  const std::vector<Vector> & p1 ) {
      69           0 :   this->p1=p1;
      70           0 :   if(mykearsley!=NULL) {mykearsley->assignP1(p1);} else {cerr<<"kearsley is not initialized"<<endl; exit(0);}
      71           0 : }
      72             : 
      73           0 : void OptimalAlignment::assignAlign(  const std::vector<double> & align ) {
      74           0 :   this->align=align;
      75           0 :   if(mykearsley!=NULL) {mykearsley->assignAlign(align);} else {cerr<<"kearsley is not initialized"<<endl; exit(0);}
      76           0 : }
      77             : 
      78           0 : void OptimalAlignment::assignDisplace(  const std::vector<double> & displace ) {
      79           0 :   this->displace=displace;
      80           0 : }
      81             : 
      82             : 
      83           0 : double OptimalAlignment::calculate(bool squared, std::vector<Vector> & derivatives) {
      84             : 
      85           0 :   bool rmsd=!squared ;
      86             : 
      87             :   double err;
      88             : 
      89             :   // at this point everything should be already in place for calculating the alignment (p1,p2,align)
      90             :   // here everything is done with kearsley algorithm. Extension to other optimal alignment algos is
      91             :   // possible here below with a switch
      92             : 
      93           0 :   err=mykearsley->calculate(rmsd);  // this calculates the MSD: transform into RMSD
      94             : 
      95             :   // check findiff alignment
      96             :   //mykearsley->finiteDifferenceInterface(rmsd);
      97             : 
      98           0 :   if(fast) {
      99             :     //log->printf("Doing fast: ERR %12.6f \n",err);
     100           0 :     derrdp0=mykearsley->derrdp0;
     101           0 :     derrdp1=mykearsley->derrdp1;
     102           0 :     derivatives=derrdp0;
     103             :   } else {
     104             :     /// TODO this interface really sucks since is strongly asymmetric should be re-engineered.
     105           0 :     err=weightedAlignment(rmsd);
     106             :     //log->printf("Doing slow: ERR %12.6f \n",err);
     107           0 :     derivatives=derrdp0;
     108             :   }
     109             :   // destroy the kearsley object?
     110             : 
     111           0 :   return err;
     112             : }
     113             : 
     114             : #ifdef __INTEL_COMPILER
     115             : #pragma intel optimization_level 2
     116             : #endif
     117             : /// this does the weighed alignment if the vector of alignment is different from displacement
     118           0 : double OptimalAlignment::weightedAlignment( bool rmsd) {
     119             :   double tmp0,tmp1,walign,wdisplace,const1,ret;
     120             :   unsigned  i,k,l,m,n,o,oo,mm;
     121             : 
     122           0 :   unsigned natoms=p0.size();
     123             : 
     124           0 :   Kearsley *myk=mykearsley;  /// just a shortcut
     125             : 
     126             :   /// TODO : these two blocks can be calculated once forever after the initialization (exception for certain methods?)
     127             : 
     128             :   /// clear derivatives
     129           0 :   if (derrdp0.size()!=natoms)derrdp0.resize(natoms);
     130           0 :   if (derrdp1.size()!=natoms)derrdp1.resize(natoms);
     131             : 
     132             :   // clear the container
     133           0 :   for(i=0; i<natoms; i++) {
     134           0 :     derrdp0[i][0]=derrdp0[i][1]=derrdp0[i][2]=0.;
     135           0 :     derrdp1[i][0]=derrdp1[i][1]=derrdp1[i][2]=0.;
     136             :   }
     137             : 
     138           0 :   walign=0.;
     139           0 :   vector<int> alignmap;
     140           0 :   for(i=0; i<natoms; i++) {
     141           0 :     if (align[i]>0.) {
     142           0 :       alignmap.push_back(i);
     143           0 :       walign+=align[i];
     144             :     }
     145           0 :     if (align[i]<0.) {cerr<<"FOUND ALIGNMENT WEIGHT NEGATIVE!"<<endl; exit(0);};
     146             :   }
     147             : 
     148           0 :   wdisplace=0.;
     149           0 :   vector<int> displacemap;
     150           0 :   for(i=0; i<natoms; i++) {
     151           0 :     if (displace[i]>0.) {
     152           0 :       displacemap.push_back(i);
     153           0 :       wdisplace+=displace[i];
     154             :     }
     155           0 :     if (displace[i]<0.) {cerr<<"FOUND ALIGNMENT WEIGHT NEGATIVE!"<<endl; exit(0);};
     156             :   }
     157             : 
     158             : 
     159           0 :   tmp0=0.;
     160             : 
     161           0 :   vector<Vector> array_n_3;
     162           0 :   array_n_3.resize(natoms);
     163           0 :   for(i=0; i<array_n_3.size(); i++)array_n_3[i][0]=array_n_3[i][1]=array_n_3[i][2]=0.;
     164             : 
     165             :   //    err= (1/totdisplace) sum_k_l   displace_k*((p0reset_k_l- sum_k_m rot_l_m*p1reset_k_m )**2)
     166             : 
     167             :   //for(kk=0;kk<displacemap.size();kk++){
     168             :   //    k=displacemap[kk];
     169           0 :   for(k=0; k<natoms; k++) {
     170             : 
     171           0 :     for(l=0; l<3; l++) {
     172             : 
     173           0 :       tmp1=0.;
     174             :       // contribution from rotated reference frame //
     175           0 :       for(m=0; m<3; m++) {
     176           0 :         tmp1-=myk->rotmat0on1[l][m]*myk->p1reset[k][m];
     177             :       }
     178             : 
     179             :       // contribution from running centered frame //
     180           0 :       tmp1+= myk->p0reset[k][l];
     181             : 
     182           0 :       array_n_3[k][l]=tmp1; // store coefficents for derivative usage//
     183           0 :       tmp0+=tmp1*tmp1*displace[k]; //squared distance added//
     184             :     }
     185             : 
     186             :   }
     187             : 
     188           0 :   tmp0=tmp0/wdisplace;
     189             : 
     190             :   // log->printf(" ERRR NEW %f \n",tmp0);
     191             : 
     192           0 :   ret=tmp0;
     193             : 
     194             :   /* DERIVATIVE CALCULATION:respect to running frame */
     195           0 :   for(k=0; k<natoms; k++) {
     196           0 :     for(l=0; l<3; l++) {
     197             : 
     198           0 :       tmp1 =2.*array_n_3[k][l]*displace[k]/wdisplace ; //ok
     199             : 
     200           0 :       const1=2.*align[k]/(walign*wdisplace);
     201             : 
     202           0 :       if(const1>0.) {
     203           0 :         for(oo=0; oo<displacemap.size(); oo++) {
     204           0 :           o=displacemap[oo];
     205           0 :           tmp1 -=const1*array_n_3[o][l]*displace[o];   //ok
     206             :         }
     207             :       }
     208             : 
     209           0 :       for(mm=0; mm<displacemap.size(); mm++) {
     210           0 :         m=displacemap[mm];
     211           0 :         const1=2.* displace[m]/wdisplace ;
     212           0 :         for(n=0; n<3; n++) {
     213           0 :           tmp0=0.;
     214           0 :           for(o=0; o<3; o++) {
     215           0 :             int ind=n*3*3*natoms+o*3*natoms+l*natoms+k;  //ok
     216           0 :             tmp0+=myk->dmatdp0[ind]*myk->p1reset[m][o];
     217             :           }
     218           0 :           tmp0*=-const1*array_n_3[m][n];
     219             : 
     220           0 :           tmp1+=tmp0;
     221             :         }
     222             :       }
     223             : 
     224           0 :       derrdp0[k][l]=tmp1;
     225             : 
     226             :     }
     227             :   }
     228             :   //exit(0);
     229             : 
     230             :   //return ret;
     231           0 :   bool do_frameref_der=true;
     232             : 
     233             :   // derivatives of
     234             :   //    err= (1/totdisplace) sum_k_l   displace_k*((p0reset_k_l- sum_m rot_l_m*p1reset_k_m )**2)
     235             :   // respect p1:
     236             :   // derr_dp1=(1/totdisplace) sum_k_l 2*displace_k*(p0reset_k_l- sum_m rot_l_m*p1reset_k_m )
     237             :   //                                                                     *d/dp1 ( p0reset_k_l- sum_m rot_l_m*p1reset_k_m)
     238             :   // =
     239             :   // (1/totdisplace) sum_k_l 2*displace_k*(p0reset_k_l- sum_m rot_l_m*p1reset_k_m )*
     240             :   //                                                    *(d/dp1 p0reset_k_l
     241             :   //                                                            - sum_m (d/dp1  rot_l_m)*p1reset_k_m
     242             :   //                                                            - sum_m rot_l_m*(d/dp1 p1reset_k_m ) )
     243             :   // =
     244             :   //                            sum_k_l 2*displace_k/totdisplace* array_n_3_k_l
     245             :   //                                                    *(- sum_m (d/dp1  rot_l_m)*p1reset_k_m
     246             :   //                                                            - sum_m rot_l_m*(d/dp1 p1reset_k_m ) )
     247             : 
     248           0 :   if(do_frameref_der) {
     249           0 :     for(k=0; k<natoms; k++) {
     250             : //                      for(kk=0;kk<displacemap.size();kk++){
     251             : //                              k=displacemap[kk];
     252             : 
     253           0 :       for(l=0; l<3; l++) {
     254             : 
     255           0 :         tmp1=0.;
     256           0 :         for(mm=0; mm<displacemap.size(); mm++) {
     257           0 :           m=displacemap[mm];
     258           0 :           const1=2.* displace[m]/wdisplace ;
     259           0 :           for(n=0; n<3; n++) {
     260           0 :             tmp0=0.;
     261           0 :             for(o=0; o<3; o++) {
     262           0 :               int ind=n*3*3*natoms+o*3*natoms+l*natoms+k;
     263           0 :               tmp0+=myk->dmatdp1[ind]*myk->p1reset[m][o];
     264             :             }
     265           0 :             tmp0*=-const1*array_n_3[m][n];
     266           0 :             tmp1+= tmp0;
     267             :           }
     268             : 
     269             :         }
     270             : 
     271           0 :         tmp0=0.;
     272           0 :         for(o=0; o<3; o++) {
     273           0 :           tmp0+=array_n_3[k][o]*myk->rotmat0on1[o][l];
     274             :         }
     275           0 :         tmp1+=-tmp0*2.*displace[k]/wdisplace;
     276             : 
     277           0 :         tmp0=0.;
     278             : 
     279           0 :         for(mm=0; mm<displacemap.size(); mm++) {
     280           0 :           m=displacemap[mm];
     281           0 :           for(o=0; o<3; o++) {
     282           0 :             tmp0+=array_n_3[m][o]*myk->rotmat0on1[o][l]*displace[m];
     283             :           }
     284             :         }
     285           0 :         tmp1 += tmp0*2.*align[k]/(walign*wdisplace);
     286             : 
     287           0 :         derrdp1[k][l]=tmp1;
     288             : 
     289             :       }
     290             :     }
     291             :   }
     292             : 
     293             :   /// probably not really the way it should be
     294           0 :   if (rmsd) {
     295           0 :     ret=sqrt(ret);
     296           0 :     double tmp=0.5/ret;
     297           0 :     for(unsigned i=0; i<natoms; i++) {
     298           0 :       derrdp0[i][0]=derrdp0[i][0]*tmp;
     299           0 :       derrdp0[i][1]=derrdp0[i][1]*tmp;
     300           0 :       derrdp0[i][2]=derrdp0[i][2]*tmp;
     301           0 :       derrdp1[i][0]=derrdp1[i][0]*tmp;
     302           0 :       derrdp1[i][1]=derrdp1[i][1]*tmp;
     303           0 :       derrdp1[i][2]=derrdp1[i][2]*tmp;
     304             : 
     305             :     }
     306             :   }
     307             : 
     308           0 :   return ret;
     309             : }
     310             : 
     311           0 : double OptimalAlignment::weightedFindiffTest( bool rmsd) {
     312             : 
     313           0 :   Random rnd;
     314             : 
     315           0 :   log->printf("Entering rmsd finite difference test system\n ");
     316           0 :   log->printf("RMSD OR MSD: %s\n",(rmsd)?"rmsd":"msd");
     317           0 :   log->printf("-------------------------------------------\n");
     318           0 :   log->printf("TEST1: derivative of the value (derr_dr0/derr_dr1)\n");
     319             :   //// test 1
     320           0 :   double step=1.e-8,olderr,delta,err;
     321           0 :   vector<Vector> fakederivatives;
     322           0 :   fakederivatives.resize(p0.size());
     323           0 :   fast=false;
     324             :   // randomizing alignments and  displacements
     325             :   /*    for (i=0;i<p0.size();i++){
     326             :                 // draw a random number
     327             :             delta=drand48();
     328             :             delta1=drand48();
     329             :             if(delta>delta1){
     330             :                 align[i]=delta;
     331             :             }else{align[i]=0.;};
     332             :             delta=drand48();
     333             :             delta1=drand48();
     334             :             if(delta>delta1){
     335             :                 displace[i]=delta;
     336             :             }else{displace[i]=0.;}
     337             :         }*/
     338             :   //// get initial value of the error and derivative of it
     339           0 :   assignAlign(align);
     340           0 :   assignDisplace(displace);
     341           0 :   olderr=calculate(rmsd, fakederivatives);
     342             : 
     343           0 :   log->printf("INITIAL ERROR VALUE: %e\n",olderr);
     344             : 
     345             :   // randomizing alignments and  displacements
     346           0 :   log->printf("TESTING: derrdp0 \n");
     347             : 
     348           0 :   for(unsigned j=0; j<3; j++) {
     349           0 :     for(unsigned i=0; i<derrdp0.size(); i++) {
     350             :       // random displacement
     351           0 :       delta=(rnd.RandU01()-0.5)*2*step;
     352           0 :       p0[i][j]+=delta;
     353           0 :       assignP0( p0 );
     354           0 :       err=calculate(rmsd, fakederivatives);
     355           0 :       p0[i][j]-=delta;
     356           0 :       assignP0( p0 );
     357           0 :       switch(j) {
     358             :       case 0:
     359           0 :         log->printf("TESTING: X  %4u ANAL %18.9f NUMER %18.9f DELTA %18.9f DISP %6.2f ALIGN %6.2f \n",i,derrdp0[i][j],(err-olderr)/delta,derrdp0[i][j]-(err-olderr)/delta,displace[i],align[i]); break;
     360             :       case 1:
     361           0 :         log->printf("TESTING: Y  %4u ANAL %18.9f NUMER %18.9f DELTA %18.9f DISP %6.2f ALIGN %6.2f \n",i,derrdp0[i][j],(err-olderr)/delta,derrdp0[i][j]-(err-olderr)/delta,displace[i],align[i]); break;
     362             :       case 2:
     363           0 :         log->printf("TESTING: Z  %4u ANAL %18.9f NUMER %18.9f DELTA %18.9f DISP %6.2f ALIGN %6.2f \n",i,derrdp0[i][j],(err-olderr)/delta,derrdp0[i][j]-(err-olderr)/delta,displace[i],align[i]); break;
     364             : 
     365             :       }
     366             :     }
     367             :   }
     368             : 
     369           0 :   log->printf("TESTING: derrdp1 \n");
     370           0 :   for(unsigned j=0; j<3; j++) {
     371           0 :     for(unsigned i=0; i<derrdp1.size(); i++) {
     372             :       // random displacement
     373           0 :       delta=(rnd.RandU01()-0.5)*2*step;
     374           0 :       p1[i][j]+=delta;
     375           0 :       assignP1( p1 );
     376           0 :       err=calculate(rmsd, fakederivatives);
     377           0 :       p1[i][j]-=delta;
     378           0 :       assignP1( p1 );
     379           0 :       switch(j) {
     380             :       case 0:
     381           0 :         log->printf("TESTING: X  %4u ANAL %18.9f NUMER %18.9f DELTA %18.9f DISP %6.2f ALIGN %6.2f \n",i,derrdp1[i][j],(err-olderr)/delta,derrdp1[i][j]-(err-olderr)/delta,displace[i],align[i]); break;
     382             :       case 1:
     383           0 :         log->printf("TESTING: Y  %4u ANAL %18.9f NUMER %18.9f DELTA %18.9f DISP %6.2f ALIGN %6.2f \n",i,derrdp1[i][j],(err-olderr)/delta,derrdp1[i][j]-(err-olderr)/delta,displace[i],align[i]); break;
     384             :       case 2:
     385           0 :         log->printf("TESTING: Z  %4u ANAL %18.9f NUMER %18.9f DELTA %18.9f DISP %6.2f ALIGN %6.2f \n",i,derrdp1[i][j],(err-olderr)/delta,derrdp1[i][j]-(err-olderr)/delta,displace[i],align[i]); break;
     386             : 
     387             :       }
     388             :     }
     389             :   }
     390           0 :   exit(0);
     391             : 
     392             : // This is to avoid warnings:
     393           0 :   return 0.0;
     394             : 
     395             : }
     396             : 
     397             : 
     398             : 
     399        2523 : }

Generated by: LCOV version 1.13