HBPAMM_MATRIX
This is part of the pamm module
It is only available if you configure PLUMED with ./configure –enable-modules=pamm . Furthermore, this feature is still being developed so take care when using it and report any problems on the mailing list.

Adjacency matrix in which two electronegative atoms are adjacent if they are hydrogen bonded

Examples
Glossary of keywords and components
Description of components

When the label of this action is used as the input for a second you are not referring to a scalar quantity as you are in regular collective variables. The label is used to reference the full set of quantities calculated by the action. This is usual when using MultiColvar functions. Generally when doing this the previously calculated multicolvar will be referenced using the DATA keyword rather than ARG.

This Action can be used to calculate the following scalar quantities directly. These quantities are calculated by employing the keywords listed below. These quantities can then be referenced elsewhere in the input file by using this Action's label followed by a dot and the name of the quantity. Some of them can be calculated multiple times with different parameters. In this case the quantities calculated can be referenced elsewhere in the input by using the name of the quantity followed by a numerical identifier e.g. label.lessthan-1, label.lessthan-2 etc. When doing this and, for clarity we have made it so that the user can set a particular label for each of the components. As such by using the LABEL keyword in the description of the keyword input you can customize the component name

Quantity Keyword Description
sum SUM the sum of values
The atoms involved can be specified using
SITES The list of atoms which can be part of a hydrogen bond. When this command is used the set of atoms that can donate a hydrogen bond is assumed to be the same as the set of atoms that can form hydrogen bonds. The atoms involved must be specified as a list of labels of MultiColvar or labels of a MultiColvar functions actions. If you would just like to use the atomic positions you can use a DENSITY command to specify a group of atoms. Specifying your atomic positions using labels of other MultiColvar or MultiColvar functions commands is useful, however, as you can then exploit a much wider variety of functions of the contact matrix as described in Exploiting contact matrices
Or alternatively by using
DONORS The list of atoms which can donate a hydrogen bond. The atoms involved must be specified as a list of labels of MultiColvar or labels of a MultiColvar functions actions. If you would just like to use the atomic positions you can use a DENSITY command to specify a group of atoms. Specifying your atomic positions using labels of other MultiColvar or MultiColvar functions commands is useful, however, as you can then exploit a much wider variety of functions of the contact matrix as described in Exploiting contact matrices
ACCEPTORS The list of atoms which can accept a hydrogen bond. The atoms involved must be specified as a list of labels of MultiColvar or labels of a MultiColvar functions actions. If you would just like to use the atomic positions you can use a DENSITY command to specify a group of atoms. Specifying your atomic positions using labels of other MultiColvar or MultiColvar functions commands is useful, however, as you can then exploit a much wider variety of functions of the contact matrix as described in Exploiting contact matrices
Or alternatively by using
HYDROGENS The list of hydrogen atoms that can form part of a hydrogen bond. The atoms must be specified using a comma separated list, an index range or by using a GROUP. For more information on how to specify lists of atoms see Groups and Virtual Atoms
Compulsory keywords
CLUSTERS the name of the file that contains the definitions of all the kernels for PAMM You can use multiple instances of this keyword i.e. CLUSTERS1, CLUSTERS2, CLUSTERS3...
REGULARISE ( default=0.001 ) don't allow the denominator to be smaller then this value
Options
NUMERICAL_DERIVATIVES ( default=off ) calculate the derivatives for these quantities numerically
NOPBC ( default=off ) ignore the periodic boundary conditions when calculating distances
SERIAL ( default=off ) do the calculation in serial. Do not use MPI
TIMINGS ( default=off ) output information on the timings of the various parts of the calculation
HIGHMEM

( default=off ) use a more memory intensive version of this collective variable

SUM calculate the sum of all the quantities. The final value can be referenced using label.sum. You can use multiple instances of this keyword i.e. SUM1, SUM2, SUM3... The corresponding values are then referenced using label.sum-1, label.sum-2, label.sum-3...