Action: TD_GENERALIZED_EXTREME_VALUE
| Module | ves |
|---|---|
| Description | Usage |
| Generalized extreme value distribution (static). |
Details and examples
Generalized extreme value distribution (static).
Employ a target distribution given by a generalized extreme value distribution that is defined as
where
and is the location parameter which approximately determines the location of the maximum of the distribution, is the scale parameter that determines the broadness of the distribution, and is the shape parameter that determines the tail behavior of the distribution. For , , and the Gumbel, Frechet, and Weibull families of distributions are obtained, respectively.
The location parameter is given using the LOCATION keyword, the scale parameter using the SCALE keyword, and the shape parameter using the SHAPE keyword.
This target distribution action is only defined for one dimension, for multiple dimensions it should be used in combination with TD_PRODUCT_DISTRIBUTION action.
Examples
Generalized extreme value distribution with , , and (Gumbel distribution)
td: TD_GENERALIZED_EXTREME_VALUEGeneralized extreme value distribution (static). More details LOCATIONThe mu parameter of the generalized extreme value distribution=0.0 SCALEThe sigma parameter for the generalized extreme value distribution given as a positive number=2.0 SHAPEThe xi parameter for the generalized extreme value distribution=0.0
Generalized extreme value distribution with , , and (Frechet distribution)
td: TD_GENERALIZED_EXTREME_VALUEGeneralized extreme value distribution (static). More details LOCATIONThe mu parameter of the generalized extreme value distribution=-5.0 SCALEThe sigma parameter for the generalized extreme value distribution given as a positive number=1.0 SHAPEThe xi parameter for the generalized extreme value distribution=0.5
Generalized extreme value distribution with , , and (Weibull distribution)
td: TD_GENERALIZED_EXTREME_VALUEGeneralized extreme value distribution (static). More details LOCATIONThe mu parameter of the generalized extreme value distribution=5.0 SCALEThe sigma parameter for the generalized extreme value distribution given as a positive number=1.0 SHAPEThe xi parameter for the generalized extreme value distribution=-0.5
The generalized extreme value distribution is only defined for one dimension so for multiple dimensions we have to use it in combination with the TD_PRODUCT_DISTRIBUTION action as shown in the following example where we have a Generalized extreme value distribution for argument 1 and uniform distribution for argument 2
td_gev: TD_GENERALIZED_EXTREME_VALUEGeneralized extreme value distribution (static). More details LOCATIONThe mu parameter of the generalized extreme value distribution=-5.0 SCALEThe sigma parameter for the generalized extreme value distribution given as a positive number=1.0 SHAPEThe xi parameter for the generalized extreme value distribution=0.5 td_uni: TD_UNIFORMUniform target distribution (static). More details
td_pd: TD_PRODUCT_DISTRIBUTIONTarget distribution given by a separable product of one-dimensional distributions (static or dynamic). More details DISTRIBUTIONSLabels of the one-dimensional target distribution actions for each argument to be used in the product distribution=td_gev,td_uni
Full list of keywords
The following table describes the keywords and options that can be used with this action
| Keyword | Type | Default | Description |
|---|---|---|---|
| LOCATION | compulsory | none | The mu parameter of the generalized extreme value distribution |
| SCALE | compulsory | none | The sigma parameter for the generalized extreme value distribution given as a positive number |
| SHAPE | compulsory | none | The xi parameter for the generalized extreme value distribution |
| WELLTEMPERED_FACTORThis keyword do not have examples | optional | not used | Broaden the target distribution such that it is taken as [p(s)]^(1/gamma) where gamma is the well tempered factor given here |
| SHIFT_TO_ZEROThis keyword do not have examples | optional | false | Shift the minimum value of the target distribution to zero |
| NORMALIZEThis keyword do not have examples | optional | false | Renormalized the target distribution over the intervals on which it is defined to make sure that it is properly normalized to 1 |