# Conventions for Quantum Pseudocode

@inproceedings{Knillknill1996ConventionsFQ, title={Conventions for Quantum Pseudocode}, author={E. Knillknill}, year={1996} }

A few conventions for thinking about and writing quantum pseu-docode are proposed. The conventions can be used for presenting any quantum algorithm down to the lowest level and are consistent with a quantum random access machine (QRAM) model for quantum computing. In principle a formal version of quantum pseudocode could be used in a future extension of a conventional language. Note: This report is preliminary. Please let me know of any suggestions , omissions or errors so that I can correct… Expand

No Paper Link Available

#### 82 Citations

Simulating and Compiling Code for the Sequential Quantum Random Access Machine

- Computer Science
- Electron. Notes Theor. Comput. Sci.
- 2007

The SQRAM architecture for quantum computing, which is based on Knill's QRAM model, is presented, which implements a universal set of quantum gates, and the operation of the SQRAM with Deutsch's quantum algorithm is demonstrated. Expand

Design and implementation of a quantum compiler

- Computer Science, Engineering
- Defense + Commercial Sensing
- 2010

A compiler for programming quantum architectures based on the Quantum Random Access Machine (QRAM) model, which uses the Bacon-Shor quantum error correcting code as an example quantum program that can be processed and analyzed by the compiler. Expand

Semantics and simulation of communication in quantum programming

- Physics, Computer Science
- ArXiv
- 2005

CQPL possesses a denotational semantics based on a partial order of superoperators and uses fixed points on a generalised Hilbert space to formalise the exchange of classical and quantum data between an arbitrary number of participants. Expand

Quipper: Concrete Resource Estimation in Quantum Algorithms

- Computer Science, Physics
- ArXiv
- 2014

This work designed a language, Q uipper, with scalability in mind, and is able to report actual resource counts for seven non-trivial algorithms found in the quantum computer science literature. Expand

Quipper: a scalable quantum programming language

- Computer Science
- PLDI 2013
- 2013

Quipper, a scalable, expressive, functional, higher-order quantum programming language, which is geared towards a model of computation that uses a classical computer to control a quantum device, but is not dependent on any particular model of quantum hardware. Expand

Equivalence Checking of Quantum Protocols

- Computer Science
- TACAS
- 2013

This paper presents a new technique and a tool, with a high-level interface, for verification of quantum protocols using equivalence checking, and is able to go beyond stabilizer states and verify protocols efficiently on all input states. Expand

The Modern Quantum Computing Tools Invstigation

- Computer Science
- 2020

The authors investigated the currently available tools for quantum programming including QCL, quantum pseudocode, Q# programming language and Quipper and provided the results in the article. Expand

Modeling a quantum processor using the QRAM model

- Computer Science
- Proceedings of 2011 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing
- 2011

A quantum processor controlled by classical instructions is modeled, which may later be integrated with classical components to form a hybrid quantum computer. Expand

Quantum Patterns and Types for Entanglement and Separability

- Computer Science
- Electron. Notes Theor. Comput. Sci.
- 2007

A typing system for reflecting entanglement and separability is presented in the context of classically controlled quantum computation where a classical program controls a sequence of quantum operations, i.e. unitary transformations and measurements acting on a quantum memory. Expand

An extended quantum process algebra (eQPAlg) approach for distributed quantum systems

- Computer Science, Physics
- ArXiv
- 2020

This work has ameliorated the existing rules of Lalire's quantum process algebra QPAlg by introducing the concept of formally specifying the Quantum teleportation protocol and introducing the formal description of protocol by using programs that best explains its working and satisfies the specification. Expand

#### References

SHOWING 1-10 OF 11 REFERENCES

Schumacher's quantum data compression as a quantum computation.

- Physics, Medicine
- Physical review. A, Atomic, molecular, and optical physics
- 1996

An explicit algorithm for performing Schumacher's noiseless compression of quantum bits is given, based on a combinatorial expression for a particular bijection among binary strings, expressed in a high-level pseudocode language. Expand

Semiclassical Fourier transform for quantum computation.

- Physics, Medicine
- Physical review letters
- 1996

It is shown that the Fourier transform preceding the final measurement in Shor's algorithm for factorization on a quantum computer can be carried out in a semiclassical way by using the ``classical''… Expand

An approximate Fourier transform useful in quantum factoring", IBM Research Report RC19642 ,; R. Cle

- Mathematics, Physics
- 1994

We define an approximate version of the Fourier transform on $2^L$ elements, which is computationally attractive in a certain setting, and which may find application to the problem of factoring… Expand

Elementary gates for quantum computation.

- Physics, Medicine
- Physical review. A, Atomic, molecular, and optical physics
- 1995

U(2) gates are derived, which derive upper and lower bounds on the exact number of elementary gates required to build up a variety of two- and three-bit quantum gates, the asymptotic number required for n-bit Deutsch-Toffoli gates, and make some observations about the number of unitary operations on arbitrarily many bits. Expand

Quantum Computations with Cold Trapped Ions.

- Physics, Medicine
- Physical review letters
- 1995

A quantum computer can be implemented with cold ions confined in a linear trap and interacting with laser beams, where decoherence is negligible, and the measurement can be carried out with a high efficiency. Expand

An analysis of Bennett's pebble game

- Mathematics, Computer Science
- ArXiv
- 1995

A recursion for the time optimal solution of the pebble game given a space bound is given to obtain an explicit asymptotic expression for the best time-space product. Expand

Time/Space Trade-Offs for Reversible Computation

- Mathematics, Computer Science
- SIAM J. Comput.
- 1989

Using a pebbling argument, this paper shows that, for any $\varepsilon > 0$, ordinary multitape Turing machines using time T and space S can be simulated by reversible ones using time $O(T^{1 + \varpsilon } )$ and space $O (S\log T)$ or in linear time and space$O(ST^\varePSilon )$. Expand

EEcient networks for quantum factoring. quant-ph/9602016

- EEcient networks for quantum factoring. quant-ph/9602016
- 1996

Quantum randomness and nondeterminism? Preliminary report

- Quantum randomness and nondeterminism? Preliminary report
- 1996

Elementary gatesfor quantum computation

- 1995